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Abstract

Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An 
increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abi-
otic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have 
been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental inter-
actions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, 
metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising 
cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant devel-
opment and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant 
development and defence responses to pathogen and herbivore attack and highlight their potential role as ‘novel’ 
stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic 
manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using 
transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and 
their potential for crop improvement.
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A brief history of the analysis of  
cis-zeatin derivatives

cis-Zeatin-type cytokinins (cZs) are a group of cytokinins 
(CKs) that have largely been ignored when compared to 
trans-zeatin (tZ) isomers or other highly active CKs. The lack 
of interest in cZs is based mainly on their lower activity in the 
classical CK bioassays. However, the research on cZs has also 
been restricted by the availability of appropriate methods to 

analyse their levels in plant tissues. From an analytical per-
spective, tZ and cZ-derivatives are mainly distinguishable by 
their chromatographic behaviour. Therefore, the isolation 
and identification of cZs was tightly linked to the develop-
ment of new methods in analytical chemistry that have been 
able to separate the different Z isomers. Although difficult to 
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reconstruct, it is likely that previous analyses based on low-
resolution chromatographic methods likely reported the com-
bination of both isomers in their reported zeatin (Z) levels, 
whereas some analyses might have also neglected them.

More than half  a century ago, the main procedure to 
determine CKs was based on bioassays (reviewed in Letham, 
1978). Tissue extracts were embedded in auxin-containing 
solid medium on which plant tissues were allowed to grow. 
The mass increase of the plant material in comparison to 
treatments with known substances (often kinetin) revealed 
cell division and therefore CK activity (Gyulai and Heszky, 
1994). Zea mays caryopses, for example, were shown to con-
tain high cell division activity and therefore one of the first 
CKs purified from these tissues was called Zeatin (Letham, 
1963). Mass spectrometry (MS) and nuclear magnetic reso-
nance techniques allowed much better structural resolution 
and contributed to the identification of cis-zeatin riboside 
(cZR) in RNA extractions of plant tissues (Hall et al., 1967). 
In 1971, the chemical synthesis of cZ allowed comparisons 
between biological activities of cZ and tZ (Leonard et  al., 
1971). Soon thereafter, cZ was identified as the first bacte-
rial Z isomer purified from cultures of the plant pathogen 
Rhodococcus fascians, (former Corynebacterium fascians)  
(Scarbrough et al., 1973). Trimethylsilyl derivatives of CKs 
for gas chromatography (GC)-MS improved the separation 
and quantitation of cZ from various tissues, such as wheat 
(Triticum aestivum) caryopses (Armstrong and Skoog, 1975) 
and hop (Humulus lupulus) cones (Watanabe et  al., 1978). 
With the establishment of selected ion monitoring (SIM) in 
MS, it was possible to more accurately quantify different CKs 
from plant extracts, including cZR (e.g. Dauphin et al., 1979; 
Hashizume et al., 1979). Tay et al. (1986) noted that measure-
ments of cZR could have resulted from enzymatic breakdown 
of tRNA during extraction. Using a modified extraction 
method, the authors concluded that cZR does not occur as 
free CK in tobacco shoots. Although it is now well estab-
lished that cZR occurs as free CK in tobacco and many other 
plant species, this publication motivated various groups to re-
evaluate their extraction procedures. As a result, extraction 
buffer systems, which minimize enzymatic reactions (Bieleski, 
1964) were widely applied and are still used today.

In the late 1980s a significant improvement for the quan-
tification of cZs and other CKs was achieved by using deu-
terium-labelled internal standards. These internal standards 
demonstrated high concentrations of cZ, cZR, cis-zeatin-
O-glucoside (cZOG) and cis-zeatin riboside monophosphate 
(cZRMP) in rice tissues (Takagi et  al., 1989). The accuracy 
of CK analysis was further enhanced by the development 
of different derivatization strategies (e.g. Hocart et al., 1986; 
Letham et al., 1991). These methods also helped to character-
ize the first cZ-specific O-glucosyltransferase (cZOGT, Martin 
et al., 2001) and contributed to the identification of cZ deriva-
tives as the most abundant CKs in chickpea (Cicer arietinum) 
tissues (Emery et al., 1998), or in specific organs, such as male 
flower buds of Mercurialis (Durand and Durand, 1994).

A major breakthrough in the analysis of CKs, including 
cZ derivatives, was the establishment of highly selective and 
sensitive tandem MS techniques. While the chromatographic 

conditions in some reports did not distinguish between cis and 
trans- Zs (Prinsen et al., 1995; Van Meulebroek et al., 2012), this 
was achieved by others (e.g. van Rhijn et al., 2001; Dobrev et al., 
2002; Mader et  al., 2003; Novak et  al., 2003). Simplifications 
of the CK extractions (Dobrev and Kaminek, 2002) and the 
development of a high-throughput analysis (Kojima et al., 2009; 
Schäfer et al., 2014a, b) have added new impetus to the field and 
increased the number of publications that report the levels of cZ 
derivatives in plant and microbial sources.

Immunoassays were also developed to detect CKs, including 
cZs (Weiler, 1980). However, the practicability of these assays 
was often compromised by the relative cross reactivities of the 
antibodies to different CKs, which required chromatographic 
separation of extracts prior to the analysis (Wagner and 
Beck, 1993). Immunoaffinity co-purification of CKs provides 
a useful step in various CK extraction protocols. Such meth-
ods were coupled with other chromatographic methods to 
analyse cZ derivatives from various sources, including potato 
tuber sprouts (Nicander et al., 1993, 1995). The first mono-
clonal antibodies directed against a cis-derivative of a plant 
CK were developed by Banowetz (1993). Immunopurification 
methods coupled with LC-MS analysis of CKs are still com-
monly used today (Novak et al., 2003) and contribute to the 
increasing number of publications regarding the levels of 
cZ and its derivatives as well as other CKs in tissues from 
various sources, including pea (Pisum sativum) roots (Stirk 
et al., 2008); algae (Chlorella minutissima, Stirk et al., 2011); 
moss (Physcomitrella patens) (von Schwartzenberg et  al., 
2007; Lindner et al., 2014) and the plant pathogen R. fascians 
(Pertry et al., 2009).

Clearly the recent development of sensitive, rapid, high-
throughput analytical methods has largely been responsible 
for our current understanding on the distribution and func-
tion of cZ-type CKs in plants. In this review, we provide an 
overview of the recent findings on the distribution, metabo-
lism and activities of cZs in plants and interacting organisms.

Distribution of cZ type CKs

cZ-type CKs have not only been detected in plant species 
throughout the plant kingdom, but also in interacting organ-
isms, such as bacteria (Scarbrough et  al., 1973) and fungi 
(Strzelczyk et al., 1989). Gajdošová et al. (2011) analysed the 
abundance of the cis and trans forms of Z and its derivatives 
in shoots and leaves of more than 150 representative species 
of different plant groups (angiosperms, bryophytes, eudicots, 
ferns, gymnosperms, lycophytes, magnoliids and monocots). 
Some plants such as Cryptomeria japonica (gymnosperm, 
Cupressaceae) and Quercus robur (angiosperm, Fagaceae) 
contain similar amounts of cis- and trans- Zs, but also plants 
with strong preferences for one of the isomers were found. 
In Ginkgo biloba (gymnosperm, Ginkgoaceae) and Oenothera 
biennis (angiosperm, Onagraceae) for example, >90% of the 
Z occurs as trans-isomer, whereas in Pinus sylvestris (gymno-
sperm, Pinaceae) and Urtica dioica (angiosperm, Urticaceae) 
the cis-isomer dominated the CK spectrum. In maize and oat 
cZ-type CKs even strongly exceed the combined amounts of 
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isopentenyladenine (IP)-, tZ- and dihydrozeatin (DHZ)-type 
CKs. Interestingly, these patterns are not associated with the 
evolutionary history of the plants. At present it is not clear 
which properties are related to the abundance of the cis-
isomer in particular plant species. It might be possible that 
specific environmental conditions (e.g. water and temperature 
regime, nutrient availability), biotic interactions (e.g. patho-
gen/herbivore pressure, plant-plant competition, mycorrhiza 
formation, interaction with nodulating bacteria) or lifestyle 
(e.g. slow/fast growing, annual/perennial) of the plants are 
associated with the abundance of cZs. It is also possible that 
the high levels of cis-isomers in many crops (sweet potato, 
Hashizume et  al., 1982; rice, Takagi et  al., 1985; potato, 
Nicander et  al., 1995; chickpea, Emery et  al., 1998; maize, 
Veach et al., 2003; pea, Quesnelle and Emery, 2007) may be a 
result of the plant breeding process itself.

cZ metabolism

The biosynthesis and metabolism of CKs was described in 
detail elsewhere (e.g. Sakakibara, 2006; Frebort et al., 2011). 
Here we will focus mainly on the specific requirements for 
the metabolism of cZ-type CKs (Fig.  1). The rate-limiting 
step for CK biosynthesis is the prenylation of adenine nucle-
otides by isopentenyltransferases (IPTs). In plants, there 
are two possible isoprene sources: the cytosolic mevalonate 
(MVA) and the plastidic methylerythritol phosphate (MEP) 
pathway. Additionally, there are two alternative adenine sub-
strates: ATP/ADP and tRNA; and the IPTs are accordingly 
classified as adenylate-IPTs and tRNA-IPTs. Evidence from 
Arabidopsis thaliana suggests a preference of IPTs to spe-
cific nucleotide substrates in combination with one specific 

isoprene source (Kasahara et  al., 2004; Miyawaki et  al., 
2006). cZ-type CKs are synthesized via tRNA-IPTs (tRNA 
delta2 isopentenylpyrophosphate transferases; also known as 
IPPTs; EC 2.5.1.75, Kasahara et  al., 2004). These enzymes 
can be found in almost all organisms except Archaea, 
while adenylate-IPTs have only been found in higher plants 
(Frebort et al., 2011). Prenylation by IPTs is not a random 
modification observed on all tRNAs. It targets a specific base, 
adenine 37, on the anti-loop of tRNAs of codons starting 
with uracil (i6A37; Persson et al., 1994; Taller, 1994). Studies 
in other organisms, including yeast, bacteria and mammalian 
cell culture, have shown that prenylation of tRNA is impor-
tant for translation, avoiding frameshifts and nonsense sup-
pression of UAA (Laten et al., 1978; Waas et al., 2007; Guy 
et  al., 2012). Interestingly, the role of tRNA modifications 
is often reported to be particularly apparent under specific 
conditions, such as stress or during interactions with other 
organisms (El Yacoubi et al., 2012). However, it is not clear 
whether the functions of prenylated tRNA are associated 
with those of free cZs in plants. With the exception of AtIPT4 
and AtIPT7, which are localized in the cytosol and mitochon-
dria, respectively, all Arabidopsis adenylate-IPTs are localized 
in plastids where MEP biosynthesis occurs. In contrast, the 
functional tRNA-IPT in Arabidopsis (AtIPT2) is localized in 
the cytosol (Miyawaki et al., 2004, 2006; Kumari et al., 2013). 
Nevertheless, in silico analysis of tRNA-IPTs in monocot 
species, such as maize and rice, predict plastid localizations 
(Gramene, Phytozome v9.1, UNIPROT and chlorop v1.1; 
Emanuelsson et al., 1999). Similarly, all known IPTs in moss 
are tRNA-IPTs, and PtIPT1 was shown to be localized in the 
chloroplast (Lindner et al., 2014). Knocking down PpIPT1 
decreased cZ-type CK levels in moss, consistent with its role 

Fig. 1.  Overview of cis-zeatin metabolism. tRNA-isopentenyltransferases (tRNA-IPTs) catalyse the prenylation of adenine 37 on specific (UNN-)tRNAs 
leading to the formation of isopentenyl adenine (IP)-containing tRNA. In Arabidopsis thaliana, the isopentenyl group is derived from the mevalonate (MVA) 
pathway in the cytosol; but predicted localization of enzymes in other plants suggests the use of isoprene moieties derived from the methylerythritol 
phosphate (MEP) pathway (broken arrow). The MEP pathway also contributes to IP and trans-zeatin (tZ) biosynthesis. Once isoprenylated tRNA 
is synthesized, it can be further modified and the CKs can be released by unknown enzymes (‘?’ in a black box; e.g. tRNA degrading enzymes). 
Hydroxylation of the prenyl side chain is suggested to occur on the IP-containing tRNA (i6A37-tRNA), leading to the formation of cZ-containing tRNA 
(c-io6A37-tRNA). Inactivation and catabolism of cZ is mediated by cZ-O-glucosyltransferases (cZOGT), cZ-N-glucosyltransferases (cZNGT), and 
cytokinin oxidase/dehydrogenase (CKX). Glucosylated forms of cZ-type CKs: cZOG (cZ-O-glucoside), cZROG (cZ-riboside-O-glucoside) and cZ7G/
cZ9G (cZ-N9/N7-glucosides). Multiple arrows indicate multiple biochemical steps; dotted lines show unexplored metabolic flow. DMAPP, dimethylallyl-
diphosphate; IPR, IP-riboside; cZR, cZ-riboside, A, adenine. (This figure is available in colour at JXB online.)
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in cZ biosynthesis (Lindner et al., 2014). Future studies will 
reveal if  the different localizations of tRNA-IPTs in different 
plant species are correlated with the amount and the impor-
tance of cZ-type CKs in these species.

In addition, it is likely that isoprenylation by IPTs is not 
the rate-limiting step of cZ biosynthesis but rather the deg-
radation of specific tRNAs. Consistent with this observation, 
tRNA-IPTs are constitutively expressed and not affected by 
plant hormones or nutrient status in Arabidopsis (Miyawaki 
et al., 2004, 2006), even though cZ levels change under stress 
conditions (see the following paragraphs about biotic and 
abiotic stress). Increased tRNA turnover has been found 
under various stress conditions (Fournier et  al., 1976; Lee 
and Collins, 2005; Hopper et al., 2010; Phizicky and Hopper, 
2010). Such stress conditions can also lead to increased cZs 
levels in various plant species (Fournier et al., 1976; Lee and 
Collins, 2005; Hopper et  al., 2010; Phizicky and Hopper, 
2010, see the following paragraphs about biotic and abiotic 
stress). Two of the three known tRNA turnover pathways, 
rapid tRNA decay surveillance pathway (RTD) and endo-
nucleolytic cleavage (EC), are induced upon stress and are 
known to act specifically upon modified tRNAs (Persson 
et al., 1994; Lee and Collins, 2005; Alexandrov et al., 2006), 
such as isoprenylated tRNAs. Alternatively, stress-induced 
ribonucleases, as described for angiogenin and tiRNAs, could 
lead to the release of tRNA-derived CKs (Yamasaki et al., 
2009). As mentioned before, ribonuclease activity in plant 
extracts can also contribute to the levels of free cZs. Future 
research should focus on the specific tRNA turnover path-
ways possibly involved in cZ release, and on the timing and 
mechanisms of hydroxylation of the isoprene moiety (Fig. 1).

Active CKs can be metabolized via oxidation by cytokinin 
oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.55.99.12), or by 
the activity of glycosyltransferases. While the O-glucosylation 
of CKs, including cZ(R) is reversible and O-glucosides are 
generally considered as storage products (Mok et al., 1992), 
N-glucosides are thought to represent deactivation prod-
ucts (Letham et  al., 1983; Vankova, 1999). The detection 
of cZ(R)-O-glucosides (cZOG, cZROG) and N-glucosides 
(cZ7G, cZ9G) indicated that cZ-type CKs are not mere 
tRNA degradation products, because glucosylated forms are 
not found in tRNA (Takagi et al., 1989; Wagner and Beck, 
1993; Nicander et al., 1995). Entsch et al. (1979) character-
ized a pea glucosyltransferase enzyme that conjugated cZ 
(although with lower activity than tZ). O-glucosyltransferases 
with affinity for cZ are characterized in maize (Martin et al., 
2001; Veach et al., 2003) and rice (Kudo et al., 2012). 7 and 
9-N-glucosyltransferases with affinity for tZ and other CKs 
were identified in Arabidopsis (Hou et  al., 2004), however 
their activity towards cZ was not tested. Limited knowledge 
also exists about the function of cZ degradation pathways 
via CKX. Recently, the Arabidopsis genes CKX1 and 7 were 
shown to have high preference for cZ (Gajdošová et al., 2011). 
Accordingly, overexpressing CKX7 highly decreased levels of 
free cZ(R) in Arabidopsis (Köllmer et al., 2014). In summary, 
this information illustrates that although many cZ-derived 
metabolites are commonly measured in various plant species, 
our knowledge of the genes that contribute to the regulation 
of cZ and derivatives is very limited.

It was proposed by Bassil et al. (1993) that cZ(R) and tZ(R) 
could be converted by a cis-trans isomerase, as observed in 
beans. Although other studies could find no or only negligible 
conversion between the Z isomers in tobacco BY-2 cultures, 
oat leaves, rice seedlings and maize cultured cells (Yonekura-
Sakakibara et al., 2004; Gajdošová et al., 2011; Kudo et al., 
2012), it cannot be excluded that isomerization might occur 
under specific conditions or in particular tissues or plants. 
Additionally, it remains an open question if  cZ regulation 
also relies on within-plant transport. cZR was reported as 
an abundant CK in phloem sap of Arabidopsis (Hirose et al., 
2008), but was also reported to occur in the xylem sap of 
Arabidopsis, wheat and oat (Parker et al., 1989; Hirose et al., 
2008). Additionally, Arabidopsis purine permease 1 (AtPUP1) 
and AtPUP2 were proposed as potential transporters for var-
ious CKs including cZ (Burkle et al., 2003) and they may play 
a role in the loading and unloading required for long-distance 
transport. However, definitive functional studies on a poten-
tial role for long-distance transport of cZs remain to be done.

cZ perception and signalling

To activate the CK-specific phosphorelay, cZs should be able 
to bind and activate the CHASE-domain containing histidine 
kinases (CHKs), which serve as CK receptors. Indeed, it could 
be shown that cZs can bind to CHKs and activate downstream 
elements of the signalling cascade, although with different 
sensitivity depending on the plant species and the specific 
receptor (Spichal et  al., 2004; Yonekura-Sakakibara et  al., 
2004; Romanov et al., 2006; Lomin et al., 2011; Stolz et al., 
2011). The Arabidopsis CK receptors AHK2 and AHK3, for 
example showed higher cZ affinity when compared to their 
paralogue AHK4/CRE1, however in all cases cZ affinity was 
severalfold lower than its trans-isomer (Romanov et al., 2006; 
Stolz et al., 2011). Crystal structure analysis of the AHK4-
CHASE domain in complexes with CKs revealed that the 
hydroxyl-group of cZ in contrast to tZ cannot form an addi-
tional hydrogen bond with Thr294, which is likely the reason 
for the lower cZ affinity of this receptor (Hothorn et al., 2011). 
In contrast, the maize receptor ZmHK1, a closely related 
homologue of AHK4, was shown to have a similar sensitiv-
ity to cZ compared to tZ (Yonekura-Sakakibara et al., 2004; 
Lomin et al., 2011). Also the rice CK receptors OsHK3 and 
OsHK4 have a cZ affinity, similar to other tested CKs (Choi 
et  al., 2012). Activity measurements with the PARR5::GUS 
reporter construct verified that cZ can activate the CK signal-
ling cascade in Arabidopsis (Spichal et al., 2004). This was also 
confirmed by showing strong, tZ-comparable activity of cZ 
in eliciting the transcript accumulation of the maize response 
regulator ZmRR1 (Yonekura-Sakakibara et  al., 2004) and 
of the rice response regulators OsRR1, OsRR2, OsRR6, and 
OsRR9/10 (Kudo et  al., 2012). Interestingly, also PpHCK4 
(from P. patens), a member of a recently discovered subgroup 
of CHKs, which was only found in the early diverging land 
plant Marchantia polymorpha and the moss P. patens, strongly 
responds to cZ (Gruhn et  al., 2014). Additional differences 
were reported for the receptor affinity to CK-ribosides. While 
AHK4 does not respond to CK-ribosides (Yamada et  al., 
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2001), ZmHK2 showed similar sensitivities to free bases and 
ribosides (Yonekura-Sakakibara et  al., 2004). CHKs were 
reported to have a high degree of redundancy, but specific 
functions can also be a single receptor (Riefler et al., 2006). 
The differential receptor affinities of cZs might therefore 
allow functional specialization, as indicated already for tZ and 
IP (Stolz et al., 2011). Alternatively, cZs might also function as 
modulators to fine-tune ‘general’ CK-pathway activity under 
specific conditions, but otherwise be functionally redundant 
with other CKs. How far species-specific differences in the cZ-
affinities of CK receptors are related to a functional differen-
tiation of cZs is currently unknown. The presence of receptors 
with a high cZs affinity could for example indicate a broader 
physiological role, whereas low affinity receptors, especially in 
combination with a low cis/trans ratio in some plants might 
indicate only subsidiary functions for cZs. cZ can compete 
with tZ for receptor binding in the bacterial assay (Romanov 
et al., 2006) and can partially antagonize tZ-induced chloro-
phyll accumulation in squash (Cucurbita maxima; Kuraishi 
et al., 1991). Moreover it was suggested that cZs might also 
play a role as a competitor to the more active CKs, thereby 
preserving specific CK functions that only require a low CK 
threshold (Gajdošová et al., 2011).

Roles of cZ in plant growth

CKs are well known for their essential function in plant 
development and growth. cZs have long been thought to be 
biologically inactive and were considered as possible rem-
nants of tRNA degradation (Skoog et  al., 1966; Vreman 
et al., 1972, 1978; Tay et al., 1986). Comparing the activity 
of cZ-type CKs with tZ- or IP-type CKs in classical activ-
ity assays (summarized in Gyulai and Heszky, 1994), such 
as Phaseolus (Mok et al., 1978) or tobacco cell-culture assay 
(Leonard et al., 1971; Schmitz et al., 1972; Gajdošová et al., 
2011), it was revealed that cZs have little or no activity com-
pared to IP and tZ, which are generally considered to be the 
most active natural CKs. Comparing the activities of cZs 
with their trans counterparts in various bioassays, Gajdošová 
et al. (2011) report in general between 3 and >50 times higher 
activities of the tZs (in accordance with their EC50 values), 
but the activities strongly depend on the particular bioassay. 
Several recent studies showed a developmental regulation of 
cZs in different model plants. In Arabidopsis, cZs are high 
in seeds and after imbibition (24 h), low in growing young 
plants and increase again when plants stop growing and start 
to senesce (Gajdošová et al., 2011). Similarly, cZ concentra-
tions are high during seed development in specific chickpea 
cultivars (Lulsdorf et  al., 2013). Micropropagated plantlets 
of Musa have high levels of cZ, which were replaced by IP 
upon acclimatization (Aremu et al., 2014). In addition, cZs 
levels change significantly during development in the maize 
grain, as well as in shoot and root tissues (Saleem et al., 2010; 
Zalabák et  al., 2014). Dwarf hop varieties contain signifi-
cantly higher amounts of cZs (Patzak et al., 2013) and cZR 
is a major CK in unfertilized hops (Watanabe et al., 1981). 
These results reveal that cZ-type CKs tend to accumulate 
under the particular circumstances associated with limited 

growth. However, the accumulation of cZ(R) during radicle 
emergence and early seedling establishment in Tagetes minuta 
(Stirk et al., 2005) also shows that cZs can be associated with 
fast-growth developmental stages. More data on the levels of 
specific CKs, including cZs, during the entire developmen-
tal phase of plants, instead of levels in very specific growth 
stages, are needed to draw general conclusions about their 
levels during plant growth.

Physiological processes influenced by CKs also include 
the inhibition of senescence (Gan and Amasino, 1995). cZ 
also suppressed senescence-induction in maize leaves (Behr 
et al., 2012), and in an oat-leaf assay (Gajdošová et al., 2011), 
although with lower activity than tZ, but did not inhibit 
senescence of detached flowers of Dianthus (Upfold and Van 
Staden, 1990). cZ only slightly affected fruit development in 
Cucumis sativus (Ogawa et al., 1990). Decreasing the amount 
of cZ by overexpressing cZOGTs in rice delayed leaf-senes-
cence and led to short root phenotype, longer roots, and a  
bigger number of crown roots (Kudo et al., 2012). Suppressing 
cZ levels by overexpressing CKX7 also affected root devel-
opment in Arabidopsis (Köllmer et  al., 2014). Additional 
support for cZ functions in plants came from Arabidopsis 
T-DNA insertion lines with impaired cZ biosynthesis (ipt2, 
9; Miyawaki et al., 2006; Köllmer et al., 2014), which showed 
chlorotic phenotypes, a shortened primary root, likely a result 
of the reduced root meristem size and ectopic protoxylem for-
mation. This suggests an active role of cZ-CKs in Arabidopsis 
and rice growth and development. However, the phenotypic 
changes in CKX7 overexpression lines might be more related 
to the reduction of cytosolic CK levels than to that of cZs 
in particular and the ipt2, 9 plants might have been compro-
mised by the reduced level of prenylated tRNA (Köllmer 
et al., 2014). In the moss P. patens, in which cZs are the major 
CK-type, PpIPT1 (tRNA-IPT) knockout plants with reduced 
levels of cZs also show developmental disturbances (Lindner 
et al., 2014), however, these might be caused by concomitant 
changes in levels of other active CKs.

Some studies suggest a role of cZs in dormancy and seed 
germination. cZR decreases after decapitation in released 
buds of Cicer arietinum and might be a possible inhibi-
tor of lateral bud growth (Mader et  al., 2003). In Brassica 
napus, cZR concentrations increased greatly after the onset 
of vernalization (Tarkowska et  al., 2012). In the seeds of 
oat, lucerne, Tagetes and pea, cZs dominate the CK profile, 
suggesting a role in seed physiology (Stirk et al., 2005, 2008, 
2012). In Lolium perenne, highly dormant seeds have been 
shown to have higher levels of cZR compared to seeds at a 
less dormant stage (Goggin et al., 2010). cZs were also found 
at higher levels in dormant potato tubers compared to non-
dormant ones and injection of cZ induced premature sprout 
formation (Mauk and Langille, 1978; Suttle and Banowetz, 
2000).

In summary, these reports suggest that cZs might play a 
role during times of limited growth or dormancy, as is found 
in buds, tubers and seeds. It was proposed by Gajdošová 
et al. (2011) that cZs could help to maintain a basal level of 
CK activity under these conditions, but experimental proof 
remains lacking.
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Roles of cZ in abiotic stress

As mentioned previously, the function of cZ(R) in plants 
was assumed to be the maintenance of minimal CK activ-
ity (e.g., ensuring resource supply by minimal sink activity or 
a suppression of premature leaf-senescence) under growth-
limiting conditions, including abiotic stresses. Due to the high 
energy requirements during stress adaptation, effective stress 
responses (at least at the early stage) are associated with sup-
pression of growth and reallocation of resources to the for-
mation of stress-protective compounds. So probably in this 
period tZ(R), which exhibits very high cell division promot-
ing activity, is often replaced by the much less active cZ(R). 
These CK dynamics may not only be illustrated by various 
temperature stress experiments, but also under biotic stresses 
(see below). Adjustment of the CK pool during the cold stress 
is tissue specific. Transfer of winter wheat to 4°C was associ-
ated with a rapid increase of cZ(R) in the main meristematic 
tissues crucial for over-wintering, namely crowns, in which 
maximum levels were attained already during the early stress 
response (after one day of cold exposure) (Kosova et  al., 
2012). Simultaneously, the majority of the main protective 
proteins—dehydrins (especially WCS120) accumulated. In 
leaves, mild, gradual elevation of cZ(R) was detected, attain-
ing maximum concentrations after three days of cold. The 
levels of tZ(R), however, dropped almost immediately upon 
cold exposure. During the subsequent acclimation phase, a 
moderate increase of tZ(R) was detected, associated with the 
plant’s adaptation to low temperature. A peak of cZR (rep-
resenting approximately 88% of the active CKs) was found 
in shoot apices of Brassica napus plants also after prolonged 
incubation at a low temperature (Tarkowska et al., 2012). This 
cZR peak, however, seems to be associated with the onset of 
the transition between vegetative to generative developmental 
phases, as mentioned in the previous section. Similarly, the 
peak of predominantly cZR was found at the very beginning 
of the vegetative to reproductive developmental transitions 
in cold treated Triticum monococcum (Vankova et al., 2014). 
Association of the cZ(R) peak with developmental changes 
was confirmed by comparison of the spring and the winter 
lines. In the spring wheat line, without vernalization require-
ment, a peak of cZR was detected in leaves, crowns and roots 
after 21 days at 4°C, while in the winter line, the maximum of 
cZR was delayed, occurring after the fulfilment of vernaliza-
tion requirement (42 days).

Strong increases in cZR, together with moderately active 
IP and IPR, was found in young pea leaves after 4-day cold 
stress as well as after prolonged heat stress (Vaseva et  al., 
2009). Elevation of cZ(R) concentrations with simultaneous 
down-regulation of tZR was reported at the early phase of 
heat stress response in leaves as well as in roots of tobacco 
plants (Dobra et al., 2010). This change in CK pool coincided 
with high expression of heat shock factors and heat stress-
associated proteins. Thus, responses to both temperature 
extremes seem to affect cZ/tZ profiles.

The effect of salt stress on the dynamics of cZ/tZ CKs was 
tested in maize plants (Vyroubalova et al., 2009). In roots, tis-
sues directly exposed to the salt stress, rapid elevation of the 

cZ precursor, cZRMP, was followed by elevation of cZ and 
especially of cZR, which reached maxima after 3 h (coincid-
ing with minimum tZ and tZR levels). In leaves, the peak of 
cZR also coincided with the minimum of tZ. After 3 days, 
when acclimation took place, levels of cZ-type CKs were 
down-regulated, while peaks of tZ and tZR were detected. 
Thus in salt stress, rapid down-regulation of growth is also 
associated with cZ/tZ changes. Response to salt stress may 
be also affected by other external factors, such as CO2 levels 
(Pinero et al., 2014): sweet pepper (Capsicum annuum) plants 
at lower CO2 content exhibited almost doubling cZR levels in 
comparison with high CO2 supplementation.

During drought stress, increase of cZ levels was detected 
in roots (Havlova et  al., 2008; Mackova et  al., 2013). The 
levels of cZ(R) were highly up-regulated in tobacco roots 
also in response to combined drought and heat stress. After 
re-watering, cZs were down-regulated, with a simultaneous 
increase of tZ-type CKs and a stimulation of growth, even 
to a higher extent than in control (non-stressed) plants. 
Up-regulation of cZs was also found as a crucial response 
of Plectranthus ambiguus to nitrogen deficiency (Papparozzi, 
personal communication).

The above-mentioned patterns of cZ and its riboside sug-
gest a role in maintenance of certain physiological func-
tions of CKs under stress or growth-limiting conditions. 
The described mechanism should, however, be treated with 
caution, as some plant species do not respond with an ele-
vation of cZs (e.g. soybean, Le et al., 2012) and until now, 
experimental tests that analyse abiotic stress resistance of 
plants with manipulated cZ levels are lacking. Additionally, 
plants with generally high levels of cZs (e.g., maize, Veach 
et al., 2003) indicate that cZs are not only involved in stress 
responses and during periods of growth limitations.

Roles of cZ in pathogen resistance

Recently, a function of CKs in the regulation of plant immu-
nity against pathogens has been identified. Several active 
CKs, including 6-benzylaminopurine (6-BAP), kinetin and 
tZ have been demonstrated to efficiently increase resistance 
against pathogens in Arabidopsis and tobacco (Choi et  al., 
2010; Großkinsky et  al., 2011, 2013; Argueso et  al., 2012). 
In these CK-mediated resistance phenotypes, interactions 
with other phytohormones, such as abscisic acid (Großkinsky 
et al., 2014) or salicylic acid (Choi et al., 2010; Großkinsky 
et al., 2011; Argueso et al., 2012) have been shown. In con-
trast, information on the role of cZ in plant immunity is 
limited. Pre-treatment with cZ can considerably suppress 
symptom development of Pseudomonas syringae infection 
in cultivated tobacco (Großkinsky et  al., 2013). Similar 
effects were observed in cZ pre-treated or AtIPT2 express-
ing (SAG-IPT2) plants of the wild tobacco (Nicotiana atten-
uata, Supplementary Fig. S1). The cZ effect on P.  syringae 
symptoms in N.  tabacum was, however, significantly lower 
compared to the highly active tZ. Concomitantly, cZ had no 
effect on the in planta proliferation of the pathogen as it had 
been shown for more active CKs including tZ (Großkinsky 
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et  al., 2011, 2013). These data indicate that cZ does not 
directly activate anti-pathogen defence in these plant species, 
but mainly suppress symptom development, for example by 
suppressing the pathogen-induced cell death response similar 
to that described by Barna et  al. (2008) for Z and thereby 
maintaining tissue integrity during an infection.

Interestingly, as previously mentioned, the ability to pro-
duce cZs (among others) has been identified in several patho-
gens. No specific biological role has been attributed to cZs 
found in Magnaporthe grisea hyphae and its culture filtrates 
or in rice tissue post M. grisea infection (Jiang et al., 2013). 
However, they correlated with the proliferation and symptom 
maintenance of R.  fascians infection in Arabidopsis (Pertry 
et al., 2009). This was consistent with the considerably lower 
amounts of cZs (in addition to others) produced in culture 
by the non-pathogenic R.  fascians strain D188-5 compared 
to the virulent strain D188. Furthermore, production as well 
as interconversion of CKs, including cZ and derivatives, has 
been described for Colletotrichum graminicola (Behr et  al., 
2012). The biological relevance of the modulation of cZ lev-
els by fungal production and conversion has further been 
related to the infection process. Comparable to C. gramini-
cola infection, treatment of maize leaves with cZ (but also tZ 
or 6-BAP) resulted in delayed senescence, as evidenced by the 
formation of photosynthetically active green islands (Behr 
et al., 2012), indicating the potential modulation of the host 
physiology by the fungus via cZ production. This physiologi-
cal modulation could also include the regulation of the host’s 
carbohydrate metabolism as the CK-related delay of senes-
cence is mediated by invertase activity (Balibrea Lara et al., 
2004). Since invertases play important roles for the tolerance/
resistance against biotic (Roitsch et al., 2003) as well as abi-
otic (Albacete et al., 2014) stress situations, they could be an 
important target for the specific modulation of host physiol-
ogy via cZ in plant-microbe interactions.

Role of cZ in herbivore resistance

In addition to their potential role in abiotic stress responses 
and pathogen resistance, cZs are also indicated to play a role 
in plant-herbivore interactions. Very high cZ levels in the 
larval body of the aphid, Pachypsylla celtidis indicate that 
they might be involved in induced gall formation in hack-
berry (Celtis occidentalis, Straka et  al., 2010). Insects and 
their endosymbiotic bacteria were reported to utilize CKs 
to manipulate a plant’s physiology to their advantage and it 
seems possible that cZs could also be used in combination 
with other CKs for this purpose (Giron and Glevarec, 2014). 
In addition to herbivore-mediated manipulations, plant-
mediated responses to herbivory were shown to involve cZs. 
Conrad and Kohn (1975) showed a wound-induced forma-
tion of Z-containing tRNA, potentially the cis-isomer; how-
ever the cis/trans conformation was not further specified in 
this study. Recently, Schäfer et al., (2014a) showed that cZs 
were upregulated in N. attenuata and Arabidopsis by wound-
ing and application of oral secretions from the tobacco 
hornworm (Manduca sexta) or the grasshopper, Schistocerca 

gregaria, respectively. cZR levels responded in both species, 
while cZ was much more responsive in Arabidopsis. Even 4 h 
after treatment the cZR levels were still highly up-regulated in 
N. attenuata, while the levels of another herbivory-induced, 
bioactive CK, IPR, already started to decline. Jasmonic acid 
(JA) is a key player in the plant response to chewing insect 
herbivores. Although methyljasmonate (MeJA) application 
to N.  attenuata leaves reduced IPR levels and suppressed 
the herbivory-induced CK-pathway signalling (indicated by 
NaARR5 transcripts), the cZR levels were elevated by this 
treatment. Accordingly, silencing JA biosynthesis and signal-
ling components reduced the herbivory-induced accumula-
tion of cZR. It seems likely that the contrasting regulation 
of cZR and IPR by JA could be related to their distinct meta-
bolic origin (Kasahara et  al., 2004; Miyawaki et  al., 2004). 
Herbivory, as well as jasmonates were reported as potent 
suppressors of plant-growth (Hummel et al., 2007; Meldau 
et al., 2012; Attaran et al., 2014), which is consistent with the 
observation that cZs are particularly associated with growth-
limiting conditions.

In recent years, CKs were shown to amplify plant defence 
responses against herbivores (Smigocki et al., 1993; Dervinis 
et  al., 2010). Therefore cZs might also be involved in the 
regulation of anti-herbivore defences. JA-mediated defence 
responses, such as proteinase inhibitor accumulations, were 
found to be promoted by CKs (Dervinis et al., 2010). When 
we applied cZR to N. attenuata leaves we found an increase 
in the MeJA-mediated induction of the phenolamide path-
way and trypsin proteinase inhibitor activity (Supplementary 
Fig. S2). These data suggest that cZs are potentially involved 
in defence metabolite accumulations after herbivore attack. 
However, external applications do not allow for the precise 
regulation of intracellular CK levels and additional work is 
necessary to ensure that the observed effects can be triggered 
by physiologically relevant levels of cZs.

Secondary metabolites are known to play an important role 
in various stress responses (Bennett and Wallsgrove, 1994; 
Rangan et al., 2014) and it should be tested if  cZs can also 
amplify the accumulation of other secondary metabolites, 
potentially to improve plant survival under stress conditions. 
The frequently observed mild CK activity of cZs (Schmitz 
and Skoog, 1972; Kamínek et al., 1979) might help plants to 
retain the resources required for the induction of the defence 
and stress-resistance metabolites.

Outlook

The CK pathway has frequently been predicted to harbour 
opportunities for future crop improvement (Yang et  al., 
2000; Werner et al., 2010; Qin et al., 2011; Wilkinson et al., 
2012). However, most of  these studies gloss over the dif-
ferences in specific CK profiles that exist between model 
and crop plants. cZs are highly abundant in many crop 
plants. In contrast, in Arabidopsis the trans-isomer is the 
most abundant in most growth stages (Gajdošová et  al., 
2011) and its CK receptors have a lower affinity to cZs than 
has been reported for some of  the CHKs of  crop plants 
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(Yonekura-Sakakibara et al., 2004; Romanov et al., 2006; 
Lomin et  al., 2011; Stolz et  al., 2011; Choi et  al., 2012). 
Therefore the functional predictions based on previous 
investigations in low cZ-containing plants might not reflect 
the role of  cZs in many crops.

Environmental factors can have a tremendous effect on 
agricultural productivity (Boyer, 1982). Various references 
indicate that cZs are part of the plant response to growth 
under limiting conditions and hence they might be poten-
tial targets to improve the biotic and abiotic stress resistance 
of crop plants (Fig.  2). Moreover their role during plant 
development could also help to improve crop properties. 
For example, cZs were proposed to play a role in regulating 
potato tuber dormancy (Suttle and Banowetz, 2000), which 
makes cZs potential breeding targets to produce plants with 
improved tuber storage characteristics.

Unfortunately, experimental proof  of  cZ functions 
remains rare and many assumptions need deeper and more 
rigorous experimental examination. Experiments that use 
plants with manipulated cZ levels, such as by external 
application of  cZs (e.g. Großkinsky et al., 2013), impaired 

cZ-biosynthesis (ipt2, 9 mutants, Miyawaki et al., 2006) or 
increased cZ-degradation/-inactivation (AtCKX7 overex-
pression, Köllmer et al., 2014; OscZOGT1 and OscZOGT2, 
Kudo et al., 2012) are sorely needed to unravel the role of 
cZs in plant-growth and stress responses. Additionally, 
plants overexpressing cZ-biosynthetic genes (e.g. AtIPT2) 
and forward genetic approaches to identify regulatory ele-
ments of  the cZ metabolism could also be illuminating. 
Importantly, the experimental side-effects of  the manipula-
tions, such as the changes in prenylated tRNA or the effects 
on other CKs must be taken into consideration (e.g. Köllmer 
et al., 2014). For the analysis of  stress-specific functions, the 
use of  conditional expression systems (reviewed in Corrado 
and Karali, 2009) can be very useful to disentangle stress 
responses from changes in development. The knowledge 
gained from these experiments about this widely distrib-
uted, but often neglected, hormone will help us understand 
if  it plays a role as ‘stress hormone’ under growth-limiting 
conditions and as a mediator of  responses to a plant’s inter-
actions with other organisms, including attackers, as well as 
mutualists.

Fig. 2.  cis-zeatins as potential regulators of plant development and stress responses. cis-zeatin (cZ) and its riboside (cZR) are reported to accumulate 
in particular under various conditions characterized by limited growth, during particular developmental stages, but also in response to abiotic and biotic 
stresses. cZ/cZR were shown to be involved in the regulation of the plant development and to be able to modulate plant defence responses. Based on 
their distribution patterns, they were proposed additionally to sustain a minimum cytokinin (CK) activity under growth-limiting conditions, to prevent the 
redirection of resources e.g., from stress adaptation processes to plant growth and for a means by which phytophagous organisms could manipulate 
the plant’s physiology and morphology for their benefit. However, an experimental confirmation of this hypothesis is still missing. (This figure is available in 
colour at JXB online.)
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Supplementary data

Supplementary data are available at JXB online.
Supplementary Figure S1. Pathogen-resistance of 

Nicotiana attenuata plants treated with cis-zeatin and trans-
genic plants overproducing cis-zeatin (SAG-IPT2).

Supplementary Figure S2. cis-Zeatin riboside (cZR) 
amplifies methyljasmonate (MeJA)-induced anti-herbivore 
defenses in Nicotiana attenuata.
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