

REVIEW PAPER

The role of *cis*-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions

Martin Schäfer¹, Christoph Brütting¹, Ivan David Meza-Canales¹, Dominik K. Großkinsky², Radomira Vankova³, Ian T. Baldwin¹ and Stefan Meldau^{4,*}

¹ Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany

² Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark

³ Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic

⁴ KWS SAAT AG, Molecular Physiology (RD-ME-MP), Grimsehlstrasse 31, 37555 Einbeck, Germany

* To whom correspondence should be addressed. Email: stefan.meldau@kws.com

Received 5 January 2015; Revised 3 March 2015; Accepted 8 April 2015

Abstract

Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including *trans*-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of *cis*-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.

Key words: Abiotic stress, *cis*-zeatin, c-*io*⁶A37-tRNA, herbivory, pathogen, plant growth, prenylated tRNA.

A brief history of the analysis of *cis*-zeatin derivatives

cis-Zeatin-type cytokinins (cZs) are a group of cytokinins (CKs) that have largely been ignored when compared to *trans*-zeatin (tZ) isomers or other highly active CKs. The lack of interest in cZs is based mainly on their lower activity in the classical CK bioassays. However, the research on cZs has also been restricted by the availability of appropriate methods to

analyse their levels in plant tissues. From an analytical perspective, tZ and cZ-derivatives are mainly distinguishable by their chromatographic behaviour. Therefore, the isolation and identification of cZs was tightly linked to the development of new methods in analytical chemistry that have been able to separate the different Z isomers. Although difficult to

reconstruct, it is likely that previous analyses based on low-resolution chromatographic methods likely reported the combination of both isomers in their reported zeatin (Z) levels, whereas some analyses might have also neglected them.

More than half a century ago, the main procedure to determine CKs was based on bioassays (reviewed in Letham, 1978). Tissue extracts were embedded in auxin-containing solid medium on which plant tissues were allowed to grow. The mass increase of the plant material in comparison to treatments with known substances (often kinetin) revealed cell division and therefore CK activity (Gyulai and Heszky, 1994). *Zea mays* caryopses, for example, were shown to contain high cell division activity and therefore one of the first CKs purified from these tissues was called Zeatin (Letham, 1963). Mass spectrometry (MS) and nuclear magnetic resonance techniques allowed much better structural resolution and contributed to the identification of *cis*-zeatin riboside (cZR) in RNA extractions of plant tissues (Hall et al., 1967). In 1971, the chemical synthesis of cZ allowed comparisons between biological activities of cZ and tZ (Leonard et al., 1971). Soon thereafter, cZ was identified as the first bacterial Z isomer purified from cultures of the plant pathogen *Rhodococcus fascians*, (former *Corynebacterium fascians*) (Scarborough et al., 1973). Trimethylsilyl derivatives of CKs for gas chromatography (GC)-MS improved the separation and quantitation of cZ from various tissues, such as wheat (*Triticum aestivum*) caryopses (Armstrong and Skoog, 1975) and hop (*Humulus lupulus*) cones (Watanabe et al., 1978). With the establishment of selected ion monitoring (SIM) in MS, it was possible to more accurately quantify different CKs from plant extracts, including cZR (e.g. Dauphin et al., 1979; Hashizume et al., 1979). Tay et al. (1986) noted that measurements of cZR could have resulted from enzymatic breakdown of tRNA during extraction. Using a modified extraction method, the authors concluded that cZR does not occur as free CK in tobacco shoots. Although it is now well established that cZR occurs as free CK in tobacco and many other plant species, this publication motivated various groups to re-evaluate their extraction procedures. As a result, extraction buffer systems, which minimize enzymatic reactions (Bielecki, 1964) were widely applied and are still used today.

In the late 1980s a significant improvement for the quantification of cZs and other CKs was achieved by using deuterium-labelled internal standards. These internal standards demonstrated high concentrations of cZ, cZR, *cis*-zeatin-*O*-glucoside (cZOG) and *cis*-zeatin riboside monophosphate (cZRMP) in rice tissues (Takagi et al., 1989). The accuracy of CK analysis was further enhanced by the development of different derivatization strategies (e.g. Hocart et al., 1986; Letham et al., 1991). These methods also helped to characterize the first cZ-specific *O*-glucosyltransferase (cZOGT, Martin et al., 2001) and contributed to the identification of cZ derivatives as the most abundant CKs in chickpea (*Cicer arietinum*) tissues (Emery et al., 1998), or in specific organs, such as male flower buds of *Mercurialis* (Durand and Durand, 1994).

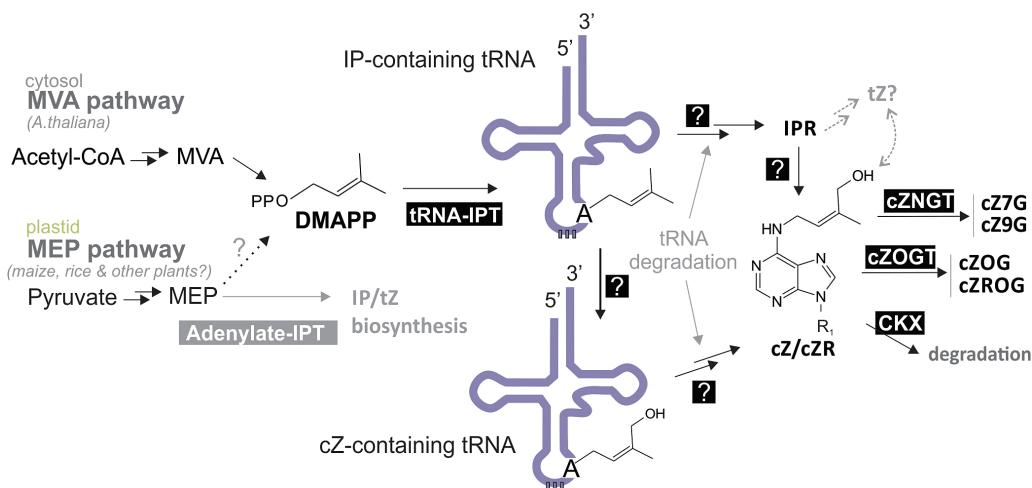
A major breakthrough in the analysis of CKs, including cZ derivatives, was the establishment of highly selective and sensitive tandem MS techniques. While the chromatographic

conditions in some reports did not distinguish between *cis* and *trans*-Zs (Prinsen et al., 1995; Van Meulebroek et al., 2012), this was achieved by others (e.g. van Rhijn et al., 2001; Dobrev et al., 2002; Mader et al., 2003; Novak et al., 2003). Simplifications of the CK extractions (Dobrev and Kaminek, 2002) and the development of a high-throughput analysis (Kojima et al., 2009; Schäfer et al., 2014a, b) have added new impetus to the field and increased the number of publications that report the levels of cZ derivatives in plant and microbial sources.

Immunoassays were also developed to detect CKs, including cZs (Weiler, 1980). However, the practicability of these assays was often compromised by the relative cross reactivities of the antibodies to different CKs, which required chromatographic separation of extracts prior to the analysis (Wagner and Beck, 1993). Immunoaffinity co-purification of CKs provides a useful step in various CK extraction protocols. Such methods were coupled with other chromatographic methods to analyse cZ derivatives from various sources, including potato tuber sprouts (Nicander et al., 1993, 1995). The first monoclonal antibodies directed against a *cis*-derivative of a plant CK were developed by Banowetz (1993). Immunopurification methods coupled with LC-MS analysis of CKs are still commonly used today (Novak et al., 2003) and contribute to the increasing number of publications regarding the levels of cZ and its derivatives as well as other CKs in tissues from various sources, including pea (*Pisum sativum*) roots (Stirk et al., 2008); algae (*Chlorella minutissima*, Stirk et al., 2011); moss (*Physcomitrella patens*) (von Schwartzenberg et al., 2007; Lindner et al., 2014) and the plant pathogen *R. fascians* (Petry et al., 2009).

Clearly the recent development of sensitive, rapid, high-throughput analytical methods has largely been responsible for our current understanding on the distribution and function of cZ-type CKs in plants. In this review, we provide an overview of the recent findings on the distribution, metabolism and activities of cZs in plants and interacting organisms.

Distribution of cZ type CKs


cZ-type CKs have not only been detected in plant species throughout the plant kingdom, but also in interacting organisms, such as bacteria (Scarborough et al., 1973) and fungi (Strzelczyk et al., 1989). Gajdošová et al. (2011) analysed the abundance of the *cis* and *trans* forms of Z and its derivatives in shoots and leaves of more than 150 representative species of different plant groups (angiosperms, bryophytes, eudicots, ferns, gymnosperms, lycophytes, magnoliids and monocots). Some plants such as *Cryptomeria japonica* (gymnosperm, Cupressaceae) and *Quercus robur* (angiosperm, Fagaceae) contain similar amounts of *cis*- and *trans*-Zs, but also plants with strong preferences for one of the isomers were found. In *Ginkgo biloba* (gymnosperm, Ginkgoaceae) and *Oenothera biennis* (angiosperm, Onagraceae) for example, >90% of the Z occurs as *trans*-isomer, whereas in *Pinus sylvestris* (gymnosperm, Pinaceae) and *Urtica dioica* (angiosperm, Urticaceae) the *cis*-isomer dominated the CK spectrum. In maize and oat cZ-type CKs even strongly exceed the combined amounts of

isopentenyladenine (IP)-, tZ- and dihydrozeatin (DHZ)-type CKs. Interestingly, these patterns are not associated with the evolutionary history of the plants. At present it is not clear which properties are related to the abundance of the *cis*-isomer in particular plant species. It might be possible that specific environmental conditions (e.g. water and temperature regime, nutrient availability), biotic interactions (e.g. pathogen/herbivore pressure, plant-plant competition, mycorrhiza formation, interaction with nodulating bacteria) or lifestyle (e.g. slow/fast growing, annual/perennial) of the plants are associated with the abundance of cZs. It is also possible that the high levels of *cis*-isomers in many crops (sweet potato, Hashizume *et al.*, 1982; rice, Takagi *et al.*, 1985; potato, Nicander *et al.*, 1995; chickpea, Emery *et al.*, 1998; maize, Veatch *et al.*, 2003; pea, Quesnelle and Emery, 2007) may be a result of the plant breeding process itself.

cZ metabolism

The biosynthesis and metabolism of CKs was described in detail elsewhere (e.g. Sakakibara, 2006; Frebort *et al.*, 2011). Here we will focus mainly on the specific requirements for the metabolism of cZ-type CKs (Fig. 1). The rate-limiting step for CK biosynthesis is the prenylation of adenine nucleotides by isopentenyltransferases (IPTs). In plants, there are two possible isoprene sources: the cytosolic mevalonate (MVA) and the plastidic methylerythritol phosphate (MEP) pathway. Additionally, there are two alternative adenine substrates: ATP/ADP and tRNA; and the IPTs are accordingly classified as adenylate-IPTs and tRNA-IPTs. Evidence from *Arabidopsis thaliana* suggests a preference of IPTs to specific nucleotide substrates in combination with one specific

isoprene source (Kasahara *et al.*, 2004; Miyawaki *et al.*, 2006). cZ-type CKs are synthesized via tRNA-IPTs (tRNA delta2 isopentenylpyrophosphate transferases; also known as IPPTs; EC 2.5.1.75, Kasahara *et al.*, 2004). These enzymes can be found in almost all organisms except Archaea, while adenylate-IPTs have only been found in higher plants (Frebort *et al.*, 2011). Prenylation by IPTs is not a random modification observed on all tRNAs. It targets a specific base, adenine 37, on the anti-loop of tRNAs of codons starting with uracil (i^6A37 ; Persson *et al.*, 1994; Taller, 1994). Studies in other organisms, including yeast, bacteria and mammalian cell culture, have shown that prenylation of tRNA is important for translation, avoiding frameshifts and nonsense suppression of UAA (Laten *et al.*, 1978; Waas *et al.*, 2007; Guy *et al.*, 2012). Interestingly, the role of tRNA modifications is often reported to be particularly apparent under specific conditions, such as stress or during interactions with other organisms (El Yacoubi *et al.*, 2012). However, it is not clear whether the functions of prenylated tRNA are associated with those of free cZs in plants. With the exception of AtIPT4 and AtIPT7, which are localized in the cytosol and mitochondria, respectively, all *Arabidopsis* adenylate-IPTs are localized in plastids where MEP biosynthesis occurs. In contrast, the functional tRNA-IPT in *Arabidopsis* (AtIPT2) is localized in the cytosol (Miyawaki *et al.*, 2004, 2006; Kumari *et al.*, 2013). Nevertheless, *in silico* analysis of tRNA-IPTs in monocot species, such as maize and rice, predict plastid localizations (Gramene, Phytozome v9.1, UNIPROT and chlorop v1.1; Emanuelsson *et al.*, 1999). Similarly, all known IPTs in moss are tRNA-IPTs, and PtIPT1 was shown to be localized in the chloroplast (Lindner *et al.*, 2014). Knocking down PpIPT1 decreased cZ-type CK levels in moss, consistent with its role

Fig. 1. Overview of *cis*-zeatin metabolism. tRNA-isopentenyltransferases (tRNA-IPTs) catalyse the prenylation of adenine 37 on specific (UNN)-tRNAs leading to the formation of isopentenyl adenine (IP)-containing tRNA. In *Arabidopsis thaliana*, the isopentenyl group is derived from the mevalonate (MVA) pathway in the cytosol; but predicted localization of enzymes in other plants suggests the use of isoprene moieties derived from the methylerythritol phosphate (MEP) pathway (broken arrow). The MEP pathway also contributes to IP and *trans*-zeatin (tZ) biosynthesis. Once isoprenylated tRNA is synthesized, it can be further modified and the CKs can be released by unknown enzymes (?) in a black box; e.g. tRNA degrading enzymes). Hydroxylation of the prenyl side chain is suggested to occur on the IP-containing tRNA (i^6A37 -tRNA), leading to the formation of cZ-containing tRNA (c- io^6A37 -tRNA). Inactivation and catabolism of cZ is mediated by cZ-O-glucosyltransferases (cZOGT), cZ-N-glucosyltransferases (cZNGT), and cytokinin oxidase/dehydrogenase (CKX). Glucosylated forms of cZ-type CKs: cZOG (cZ-O-glucoside), cZROG (cZ-riboside-O-glucoside) and cZ7G/cZ9G (cZ-N9/V7-glucosides). Multiple arrows indicate multiple biochemical steps; dotted lines show unexplored metabolic flow. DMAPP, dimethylallyl-diphosphate; IPR, IP-riboside; cZR, cZ-riboside, A, adenine. (This figure is available in colour at JXB online.)

in cZ biosynthesis (Lindner *et al.*, 2014). Future studies will reveal if the different localizations of tRNA-IPTs in different plant species are correlated with the amount and the importance of cZ-type CKs in these species.

In addition, it is likely that isoprenylation by IPTs is not the rate-limiting step of cZ biosynthesis but rather the degradation of specific tRNAs. Consistent with this observation, tRNA-IPTs are constitutively expressed and not affected by plant hormones or nutrient status in *Arabidopsis* (Miyawaki *et al.*, 2004, 2006), even though cZ levels change under stress conditions (see the following paragraphs about biotic and abiotic stress). Increased tRNA turnover has been found under various stress conditions (Fournier *et al.*, 1976; Lee and Collins, 2005; Hopper *et al.*, 2010; Phizicky and Hopper, 2010). Such stress conditions can also lead to increased cZs levels in various plant species (Fournier *et al.*, 1976; Lee and Collins, 2005; Hopper *et al.*, 2010; Phizicky and Hopper, 2010, see the following paragraphs about biotic and abiotic stress). Two of the three known tRNA turnover pathways, rapid tRNA decay surveillance pathway (RTD) and endonucleolytic cleavage (EC), are induced upon stress and are known to act specifically upon modified tRNAs (Persson *et al.*, 1994; Lee and Collins, 2005; Alexandrov *et al.*, 2006), such as isoprenylated tRNAs. Alternatively, stress-induced ribonucleases, as described for angiogenin and tRNAs, could lead to the release of tRNA-derived CKs (Yamasaki *et al.*, 2009). As mentioned before, ribonuclease activity in plant extracts can also contribute to the levels of free cZs. Future research should focus on the specific tRNA turnover pathways possibly involved in cZ release, and on the timing and mechanisms of hydroxylation of the isoprene moiety (Fig. 1).

Active CKs can be metabolized via oxidation by cytokinin oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.55.99.12), or by the activity of glycosyltransferases. While the *O*-glucosylation of CKs, including cZ(R) is reversible and *O*-glucosides are generally considered as storage products (Mok *et al.*, 1992), *N*-glucosides are thought to represent deactivation products (Letham *et al.*, 1983; Vankova, 1999). The detection of cZ(R)-*O*-glucosides (cZOG, cZROG) and *N*-glucosides (cZ7G, cZ9G) indicated that cZ-type CKs are not mere tRNA degradation products, because glucosylated forms are not found in tRNA (Takagi *et al.*, 1989; Wagner and Beck, 1993; Nicander *et al.*, 1995). Entsch *et al.* (1979) characterized a pea glucosyltransferase enzyme that conjugated cZ (although with lower activity than tZ). *O*-glucosyltransferases with affinity for cZ are characterized in maize (Martin *et al.*, 2001; Veach *et al.*, 2003) and rice (Kudo *et al.*, 2012). 7 and 9-*N*-glucosyltransferases with affinity for tZ and other CKs were identified in *Arabidopsis* (Hou *et al.*, 2004), however their activity towards cZ was not tested. Limited knowledge also exists about the function of cZ degradation pathways via CKX. Recently, the *Arabidopsis* genes *CKX1* and *7* were shown to have high preference for cZ (Gajdošová *et al.*, 2011). Accordingly, overexpressing *CKX7* highly decreased levels of free cZ(R) in *Arabidopsis* (Köllmer *et al.*, 2014). In summary, this information illustrates that although many cZ-derived metabolites are commonly measured in various plant species, our knowledge of the genes that contribute to the regulation of cZ and derivatives is very limited.

It was proposed by Bassil *et al.* (1993) that cZ(R) and tZ(R) could be converted by a *cis-trans* isomerase, as observed in beans. Although other studies could find no or only negligible conversion between the Z isomers in tobacco BY-2 cultures, oat leaves, rice seedlings and maize cultured cells (Yonekura-Sakakibara *et al.*, 2004; Gajdošová *et al.*, 2011; Kudo *et al.*, 2012), it cannot be excluded that isomerization might occur under specific conditions or in particular tissues or plants. Additionally, it remains an open question if cZ regulation also relies on within-plant transport. cZR was reported as an abundant CK in phloem sap of *Arabidopsis* (Hirose *et al.*, 2008), but was also reported to occur in the xylem sap of *Arabidopsis*, wheat and oat (Parker *et al.*, 1989; Hirose *et al.*, 2008). Additionally, *Arabidopsis* purine permease 1 (AtPUP1) and AtPUP2 were proposed as potential transporters for various CKs including cZ (Burkle *et al.*, 2003) and they may play a role in the loading and unloading required for long-distance transport. However, definitive functional studies on a potential role for long-distance transport of cZs remain to be done.

cZ perception and signalling

To activate the CK-specific phosphorelay, cZs should be able to bind and activate the CHASE-domain containing histidine kinases (CKs), which serve as CK receptors. Indeed, it could be shown that cZs can bind to CKs and activate downstream elements of the signalling cascade, although with different sensitivity depending on the plant species and the specific receptor (Spichal *et al.*, 2004; Yonekura-Sakakibara *et al.*, 2004; Romanov *et al.*, 2006; Lomin *et al.*, 2011; Stolz *et al.*, 2011). The *Arabidopsis* CK receptors AHK2 and AHK3, for example showed higher cZ affinity when compared to their parologue AHK4/CRE1, however in all cases cZ affinity was severalfold lower than its *trans*-isomer (Romanov *et al.*, 2006; Stolz *et al.*, 2011). Crystal structure analysis of the AHK4-CHASE domain in complexes with CKs revealed that the hydroxyl-group of cZ in contrast to tZ cannot form an additional hydrogen bond with Thr294, which is likely the reason for the lower cZ affinity of this receptor (Hothorn *et al.*, 2011). In contrast, the maize receptor ZmHK1, a closely related homologue of AHK4, was shown to have a similar sensitivity to cZ compared to tZ (Yonekura-Sakakibara *et al.*, 2004; Lomin *et al.*, 2011). Also the rice CK receptors OsHK3 and OsHK4 have a cZ affinity, similar to other tested CKs (Choi *et al.*, 2012). Activity measurements with the P_{ARR5}::GUS reporter construct verified that cZ can activate the CK signalling cascade in *Arabidopsis* (Spichal *et al.*, 2004). This was also confirmed by showing strong, tZ-comparable activity of cZ in eliciting the transcript accumulation of the maize response regulator ZmRR1 (Yonekura-Sakakibara *et al.*, 2004) and of the rice response regulators OsRR1, OsRR2, OsRR6, and OsRR9/10 (Kudo *et al.*, 2012). Interestingly, also PpHCK4 (from *P. patens*), a member of a recently discovered subgroup of CKs, which was only found in the early diverging land plant *Marchantia polymorpha* and the moss *P. patens*, strongly responds to cZ (Gruhn *et al.*, 2014). Additional differences were reported for the receptor affinity to CK-ribosides. While AHK4 does not respond to CK-ribosides (Yamada *et al.*,

ZmHK2 showed similar sensitivities to free bases and ribosides (Yonekura-Sakakibara *et al.*, 2004). CKs were reported to have a high degree of redundancy, but specific functions can also be a single receptor (Riefler *et al.*, 2006). The differential receptor affinities of cZs might therefore allow functional specialization, as indicated already for tZ and IP (Stolz *et al.*, 2011). Alternatively, cZs might also function as modulators to fine-tune 'general' CK-pathway activity under specific conditions, but otherwise be functionally redundant with other CKs. How far species-specific differences in the cZ-affinities of CK receptors are related to a functional differentiation of cZs is currently unknown. The presence of receptors with a high cZs affinity could for example indicate a broader physiological role, whereas low affinity receptors, especially in combination with a low *cis/trans* ratio in some plants might indicate only subsidiary functions for cZs. cZ can compete with tZ for receptor binding in the bacterial assay (Romanov *et al.*, 2006) and can partially antagonize tZ-induced chlorophyll accumulation in squash (*Cucurbita maxima*; Kuraishi *et al.*, 1991). Moreover it was suggested that cZs might also play a role as a competitor to the more active CKs, thereby preserving specific CK functions that only require a low CK threshold (Gajdošová *et al.*, 2011).

Roles of cZ in plant growth

CKs are well known for their essential function in plant development and growth. cZs have long been thought to be biologically inactive and were considered as possible remnants of tRNA degradation (Skoog *et al.*, 1966; Vreman *et al.*, 1972, 1978; Tay *et al.*, 1986). Comparing the activity of cZ-type CKs with tZ- or IP-type CKs in classical activity assays (summarized in Gyulai and Heszky, 1994), such as *Phaseolus* (Mok *et al.*, 1978) or tobacco cell-culture assay (Leonard *et al.*, 1971; Schmitz *et al.*, 1972; Gajdošová *et al.*, 2011), it was revealed that cZs have little or no activity compared to IP and tZ, which are generally considered to be the most active natural CKs. Comparing the activities of cZs with their *trans* counterparts in various bioassays, Gajdošová *et al.* (2011) report in general between 3 and >50 times higher activities of the tZs (in accordance with their EC50 values), but the activities strongly depend on the particular bioassay. Several recent studies showed a developmental regulation of cZs in different model plants. In *Arabidopsis*, cZs are high in seeds and after imbibition (24 h), low in growing young plants and increase again when plants stop growing and start to senesce (Gajdošová *et al.*, 2011). Similarly, cZ concentrations are high during seed development in specific chickpea cultivars (Lulsdorf *et al.*, 2013). Micropropagated plantlets of *Musa* have high levels of cZ, which were replaced by IP upon acclimatization (Aremu *et al.*, 2014). In addition, cZs levels change significantly during development in the maize grain, as well as in shoot and root tissues (Saleem *et al.*, 2010; Zalabák *et al.*, 2014). Dwarf hop varieties contain significantly higher amounts of cZs (Patzak *et al.*, 2013) and cZR is a major CK in unfertilized hops (Watanabe *et al.*, 1981). These results reveal that cZ-type CKs tend to accumulate under the particular circumstances associated with limited

growth. However, the accumulation of cZR during radicle emergence and early seedling establishment in *Tagetes minuta* (Stirk *et al.*, 2005) also shows that cZs can be associated with fast-growth developmental stages. More data on the levels of specific CKs, including cZs, during the entire developmental phase of plants, instead of levels in very specific growth stages, are needed to draw general conclusions about their levels during plant growth.

Physiological processes influenced by CKs also include the inhibition of senescence (Gan and Amasino, 1995). cZ also suppressed senescence-induction in maize leaves (Behr *et al.*, 2012), and in an oat-leaf assay (Gajdošová *et al.*, 2011), although with lower activity than tZ, but did not inhibit senescence of detached flowers of *Dianthus* (Upfold and Van Staden, 1990). cZ only slightly affected fruit development in *Cucumis sativus* (Ogawa *et al.*, 1990). Decreasing the amount of cZ by overexpressing cZOGTs in rice delayed leaf-senescence and led to short root phenotype, longer roots, and a bigger number of crown roots (Kudo *et al.*, 2012). Suppressing cZ levels by overexpressing CKX7 also affected root development in *Arabidopsis* (Köllmer *et al.*, 2014). Additional support for cZ functions in plants came from *Arabidopsis* T-DNA insertion lines with impaired cZ biosynthesis (*ipt2*, 9; Miyawaki *et al.*, 2006; Köllmer *et al.*, 2014), which showed chlorotic phenotypes, a shortened primary root, likely a result of the reduced root meristem size and ectopic protoxylem formation. This suggests an active role of cZ-CKs in *Arabidopsis* and rice growth and development. However, the phenotypic changes in CKX7 overexpression lines might be more related to the reduction of cytosolic CK levels than to that of cZs in particular and the *ipt2*, 9 plants might have been compromised by the reduced level of prenylated tRNA (Köllmer *et al.*, 2014). In the moss *P. patens*, in which cZs are the major CK-type, *PpIPT1* (tRNA-IPT) knockout plants with reduced levels of cZs also show developmental disturbances (Lindner *et al.*, 2014), however, these might be caused by concomitant changes in levels of other active CKs.

Some studies suggest a role of cZs in dormancy and seed germination. cZR decreases after decapitation in released buds of *Cicer arietinum* and might be a possible inhibitor of lateral bud growth (Mader *et al.*, 2003). In *Brassica napus*, cZR concentrations increased greatly after the onset of vernalization (Tarkowska *et al.*, 2012). In the seeds of oat, lucerne, *Tagetes* and pea, cZs dominate the CK profile, suggesting a role in seed physiology (Stirk *et al.*, 2005, 2008, 2012). In *Lolium perenne*, highly dormant seeds have been shown to have higher levels of cZR compared to seeds at a less dormant stage (Goggin *et al.*, 2010). cZs were also found at higher levels in dormant potato tubers compared to non-dormant ones and injection of cZ induced premature sprout formation (Mauk and Langille, 1978; Suttle and Banowetz, 2000).

In summary, these reports suggest that cZs might play a role during times of limited growth or dormancy, as is found in buds, tubers and seeds. It was proposed by Gajdošová *et al.* (2011) that cZs could help to maintain a basal level of CK activity under these conditions, but experimental proof remains lacking.

Roles of cZ in abiotic stress

As mentioned previously, the function of cZ(R) in plants was assumed to be the maintenance of minimal CK activity (e.g., ensuring resource supply by minimal sink activity or a suppression of premature leaf-senescence) under growth-limiting conditions, including abiotic stresses. Due to the high energy requirements during stress adaptation, effective stress responses (at least at the early stage) are associated with suppression of growth and reallocation of resources to the formation of stress-protective compounds. So probably in this period tZ(R), which exhibits very high cell division promoting activity, is often replaced by the much less active cZ(R). These CK dynamics may not only be illustrated by various temperature stress experiments, but also under biotic stresses (see below). Adjustment of the CK pool during the cold stress is tissue specific. Transfer of winter wheat to 4°C was associated with a rapid increase of cZ(R) in the main meristematic tissues crucial for over-wintering, namely crowns, in which maximum levels were attained already during the early stress response (after one day of cold exposure) (Kosova *et al.*, 2012). Simultaneously, the majority of the main protective proteins—dehydrins (especially WCS120) accumulated. In leaves, mild, gradual elevation of cZ(R) was detected, attaining maximum concentrations after three days of cold. The levels of tZ(R), however, dropped almost immediately upon cold exposure. During the subsequent acclimation phase, a moderate increase of tZ(R) was detected, associated with the plant's adaptation to low temperature. A peak of cZR (representing approximately 88% of the active CKs) was found in shoot apices of *Brassica napus* plants also after prolonged incubation at a low temperature (Tarkowska *et al.*, 2012). This cZR peak, however, seems to be associated with the onset of the transition between vegetative to generative developmental phases, as mentioned in the previous section. Similarly, the peak of predominantly cZR was found at the very beginning of the vegetative to reproductive developmental transitions in cold treated *Triticum monococcum* (Vankova *et al.*, 2014). Association of the cZ(R) peak with developmental changes was confirmed by comparison of the spring and the winter lines. In the spring wheat line, without vernalization requirement, a peak of cZR was detected in leaves, crowns and roots after 21 days at 4°C, while in the winter line, the maximum of cZR was delayed, occurring after the fulfillment of vernalization requirement (42 days).

Strong increases in cZR, together with moderately active IP and IPR, was found in young pea leaves after 4-day cold stress as well as after prolonged heat stress (Vaseva *et al.*, 2009). Elevation of cZ(R) concentrations with simultaneous down-regulation of tZR was reported at the early phase of heat stress response in leaves as well as in roots of tobacco plants (Dobra *et al.*, 2010). This change in CK pool coincided with high expression of heat shock factors and heat stress-associated proteins. Thus, responses to both temperature extremes seem to affect cZ/tZ profiles.

The effect of salt stress on the dynamics of cZ/tZ CKs was tested in maize plants (Vyrubalova *et al.*, 2009). In roots, tissues directly exposed to the salt stress, rapid elevation of the

cZ precursor, cZRMP, was followed by elevation of cZ and especially of cZR, which reached maxima after 3 h (coinciding with minimum tZ and tZR levels). In leaves, the peak of cZR also coincided with the minimum of tZ. After 3 days, when acclimation took place, levels of cZ-type CKs were down-regulated, while peaks of tZ and tZR were detected. Thus in salt stress, rapid down-regulation of growth is also associated with cZ/tZ changes. Response to salt stress may be also affected by other external factors, such as CO₂ levels (Pinero *et al.*, 2014): sweet pepper (*Capsicum annuum*) plants at lower CO₂ content exhibited almost doubling cZR levels in comparison with high CO₂ supplementation.

During drought stress, increase of cZ levels was detected in roots (Havlova *et al.*, 2008; Mackova *et al.*, 2013). The levels of cZ(R) were highly up-regulated in tobacco roots also in response to combined drought and heat stress. After re-watering, cZs were down-regulated, with a simultaneous increase of tZ-type CKs and a stimulation of growth, even to a higher extent than in control (non-stressed) plants. Up-regulation of cZs was also found as a crucial response of *Plectranthus ambiguus* to nitrogen deficiency (Papparozzi, personal communication).

The above-mentioned patterns of cZ and its riboside suggest a role in maintenance of certain physiological functions of CKs under stress or growth-limiting conditions. The described mechanism should, however, be treated with caution, as some plant species do not respond with an elevation of cZs (e.g. soybean, Le *et al.*, 2012) and until now, experimental tests that analyse abiotic stress resistance of plants with manipulated cZ levels are lacking. Additionally, plants with generally high levels of cZs (e.g., maize, Veach *et al.*, 2003) indicate that cZs are not only involved in stress responses and during periods of growth limitations.

Roles of cZ in pathogen resistance

Recently, a function of CKs in the regulation of plant immunity against pathogens has been identified. Several active CKs, including 6-benzylaminopurine (6-BAP), kinetin and tZ have been demonstrated to efficiently increase resistance against pathogens in *Arabidopsis* and tobacco (Choi *et al.*, 2010; Großkinsky *et al.*, 2011, 2013; Argueso *et al.*, 2012). In these CK-mediated resistance phenotypes, interactions with other phytohormones, such as abscisic acid (Großkinsky *et al.*, 2014) or salicylic acid (Choi *et al.*, 2010; Großkinsky *et al.*, 2011; Argueso *et al.*, 2012) have been shown. In contrast, information on the role of cZ in plant immunity is limited. Pre-treatment with cZ can considerably suppress symptom development of *Pseudomonas syringae* infection in cultivated tobacco (Großkinsky *et al.*, 2013). Similar effects were observed in cZ pre-treated or *AtIPT2* expressing (*SAG-IPT2*) plants of the wild tobacco (*Nicotiana attenuata*, Supplementary Fig. S1). The cZ effect on *P. syringae* symptoms in *N. tabacum* was, however, significantly lower compared to the highly active tZ. Concomitantly, cZ had no effect on the *in planta* proliferation of the pathogen as it had been shown for more active CKs including tZ (Großkinsky

et al., 2011, 2013). These data indicate that cZ does not directly activate anti-pathogen defence in these plant species, but mainly suppress symptom development, for example by suppressing the pathogen-induced cell death response similar to that described by Barna et al. (2008) for Z and thereby maintaining tissue integrity during an infection.

Interestingly, as previously mentioned, the ability to produce cZs (among others) has been identified in several pathogens. No specific biological role has been attributed to cZs found in *Magnaporthe grisea* hyphae and its culture filtrates or in rice tissue post *M. grisea* infection (Jiang et al., 2013). However, they correlated with the proliferation and symptom maintenance of *R. fascians* infection in *Arabidopsis* (Perty et al., 2009). This was consistent with the considerably lower amounts of cZs (in addition to others) produced in culture by the non-pathogenic *R. fascians* strain D188-5 compared to the virulent strain D188. Furthermore, production as well as interconversion of CKs, including cZ and derivatives, has been described for *Colletotrichum graminicola* (Behr et al., 2012). The biological relevance of the modulation of cZ levels by fungal production and conversion has further been related to the infection process. Comparable to *C. graminicola* infection, treatment of maize leaves with cZ (but also tZ or 6-BAP) resulted in delayed senescence, as evidenced by the formation of photosynthetically active green islands (Behr et al., 2012), indicating the potential modulation of the host physiology by the fungus via cZ production. This physiological modulation could also include the regulation of the host's carbohydrate metabolism as the CK-related delay of senescence is mediated by invertase activity (Balibrea Lara et al., 2004). Since invertases play important roles for the tolerance/resistance against biotic (Roitsch et al., 2003) as well as abiotic (Albacete et al., 2014) stress situations, they could be an important target for the specific modulation of host physiology via cZ in plant-microbe interactions.

Role of cZ in herbivore resistance

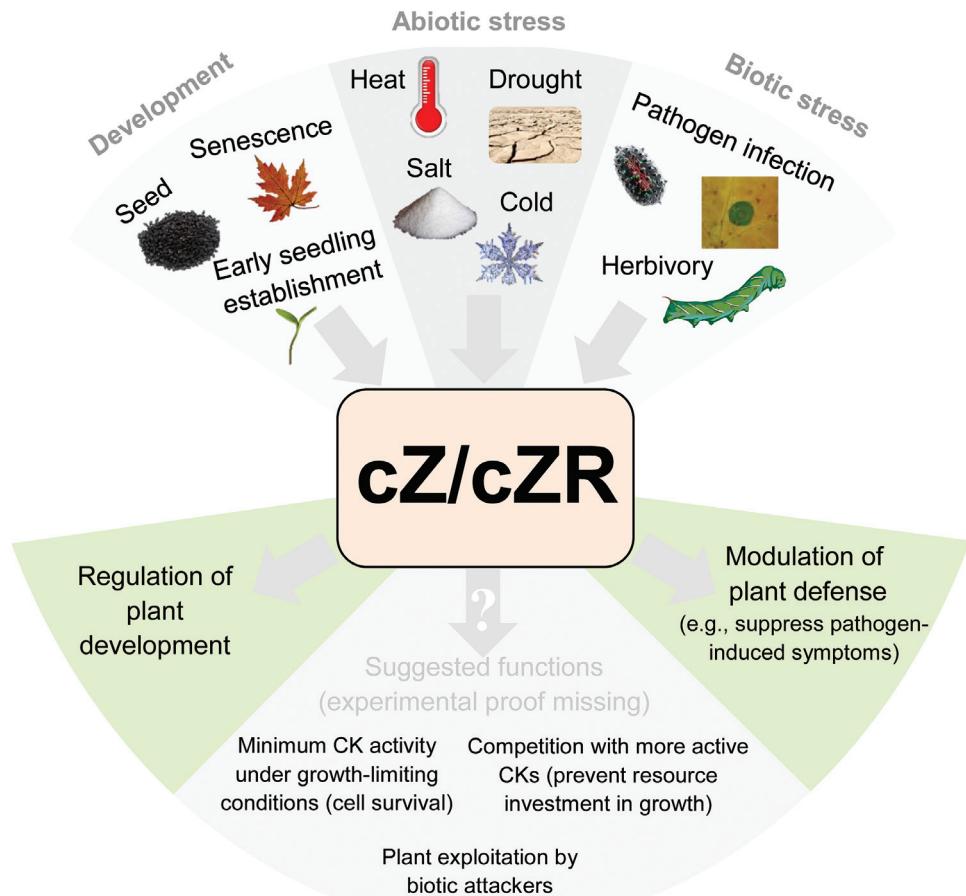
In addition to their potential role in abiotic stress responses and pathogen resistance, cZs are also indicated to play a role in plant-herbivore interactions. Very high cZ levels in the larval body of the aphid, *Pachypsylia celtidis* indicate that they might be involved in induced gall formation in hickory (*Celtis occidentalis*, Straka et al., 2010). Insects and their endosymbiotic bacteria were reported to utilize CKs to manipulate a plant's physiology to their advantage and it seems possible that cZs could also be used in combination with other CKs for this purpose (Giron and Glevarec, 2014). In addition to herbivore-mediated manipulations, plant-mediated responses to herbivory were shown to involve cZs. Conrad and Kohn (1975) showed a wound-induced formation of Z-containing tRNA, potentially the *cis*-isomer; however the *cis/trans* conformation was not further specified in this study. Recently, Schäfer et al. (2014a) showed that cZs were upregulated in *N. attenuata* and *Arabidopsis* by wounding and application of oral secretions from the tobacco hornworm (*Manduca sexta*) or the grasshopper, *Schistocerca*

gregaria, respectively. cZR levels responded in both species, while cZ was much more responsive in *Arabidopsis*. Even 4 h after treatment the cZR levels were still highly up-regulated in *N. attenuata*, while the levels of another herbivory-induced, bioactive CK, IPR, already started to decline. Jasmonic acid (JA) is a key player in the plant response to chewing insect herbivores. Although methyljasmonate (MeJA) application to *N. attenuata* leaves reduced IPR levels and suppressed the herbivory-induced CK-pathway signalling (indicated by *NaARR5* transcripts), the cZR levels were elevated by this treatment. Accordingly, silencing JA biosynthesis and signalling components reduced the herbivory-induced accumulation of cZR. It seems likely that the contrasting regulation of cZR and IPR by JA could be related to their distinct metabolic origin (Kasahara et al., 2004; Miyawaki et al., 2004). Herbivory, as well as jasmonates were reported as potent suppressors of plant-growth (Hummel et al., 2007; Meldau et al., 2012; Attaran et al., 2014), which is consistent with the observation that cZs are particularly associated with growth-limiting conditions.

In recent years, CKs were shown to amplify plant defence responses against herbivores (Smigocki et al., 1993; Dervinis et al., 2010). Therefore cZs might also be involved in the regulation of anti-herbivore defences. JA-mediated defence responses, such as proteinase inhibitor accumulations, were found to be promoted by CKs (Dervinis et al., 2010). When we applied cZR to *N. attenuata* leaves we found an increase in the MeJA-mediated induction of the phenolamide pathway and trypsin proteinase inhibitor activity (Supplementary Fig. S2). These data suggest that cZs are potentially involved in defence metabolite accumulations after herbivore attack. However, external applications do not allow for the precise regulation of intracellular CK levels and additional work is necessary to ensure that the observed effects can be triggered by physiologically relevant levels of cZs.

Secondary metabolites are known to play an important role in various stress responses (Bennett and Wallsgrove, 1994; Rangan et al., 2014) and it should be tested if cZs can also amplify the accumulation of other secondary metabolites, potentially to improve plant survival under stress conditions. The frequently observed mild CK activity of cZs (Schmitz and Skoog, 1972; Kamínek et al., 1979) might help plants to retain the resources required for the induction of the defence and stress-resistance metabolites.

Outlook


The CK pathway has frequently been predicted to harbour opportunities for future crop improvement (Yang et al., 2000; Werner et al., 2010; Qin et al., 2011; Wilkinson et al., 2012). However, most of these studies gloss over the differences in specific CK profiles that exist between model and crop plants. cZs are highly abundant in many crop plants. In contrast, in *Arabidopsis* the *trans*-isomer is the most abundant in most growth stages (Gajdošová et al., 2011) and its CK receptors have a lower affinity to cZs than has been reported for some of the CKs of crop plants

(Yonekura-Sakakibara *et al.*, 2004; Romanov *et al.*, 2006; Lomin *et al.*, 2011; Stoltz *et al.*, 2011; Choi *et al.*, 2012). Therefore the functional predictions based on previous investigations in low cZ-containing plants might not reflect the role of cZs in many crops.

Environmental factors can have a tremendous effect on agricultural productivity (Boyer, 1982). Various references indicate that cZs are part of the plant response to growth under limiting conditions and hence they might be potential targets to improve the biotic and abiotic stress resistance of crop plants (Fig. 2). Moreover their role during plant development could also help to improve crop properties. For example, cZs were proposed to play a role in regulating potato tuber dormancy (Suttle and Banowetz, 2000), which makes cZs potential breeding targets to produce plants with improved tuber storage characteristics.

Unfortunately, experimental proof of cZ functions remains rare and many assumptions need deeper and more rigorous experimental examination. Experiments that use plants with manipulated cZ levels, such as by external application of cZs (e.g. Großkinsky *et al.*, 2013), impaired

cZ-biosynthesis (*ipt2*, 9 mutants, Miyawaki *et al.*, 2006) or increased cZ-degradation/-inactivation (*AtCKX7* overexpression, Köllmer *et al.*, 2014; *OscZOGT1* and *OscZOGT2*, Kudo *et al.*, 2012) are sorely needed to unravel the role of cZs in plant-growth and stress responses. Additionally, plants overexpressing cZ-biosynthetic genes (e.g. *AtIPT2*) and forward genetic approaches to identify regulatory elements of the cZ metabolism could also be illuminating. Importantly, the experimental side-effects of the manipulations, such as the changes in prenylated tRNA or the effects on other CKs must be taken into consideration (e.g. Köllmer *et al.*, 2014). For the analysis of stress-specific functions, the use of conditional expression systems (reviewed in Corrado and Karali, 2009) can be very useful to disentangle stress responses from changes in development. The knowledge gained from these experiments about this widely distributed, but often neglected, hormone will help us understand if it plays a role as 'stress hormone' under growth-limiting conditions and as a mediator of responses to a plant's interactions with other organisms, including attackers, as well as mutualists.

Fig. 2. *cis*-zeatins as potential regulators of plant development and stress responses. *cis*-zeatin (cZ) and its riboside (cZR) are reported to accumulate in particular under various conditions characterized by limited growth, during particular developmental stages, but also in response to abiotic and biotic stresses. cZ/cZR were shown to be involved in the regulation of the plant development and to be able to modulate plant defence responses. Based on their distribution patterns, they were proposed additionally to sustain a minimum cytokinin (CK) activity under growth-limiting conditions, to prevent the redirection of resources e.g., from stress adaptation processes to plant growth and for a means by which phytophagous organisms could manipulate the plant's physiology and morphology for their benefit. However, an experimental confirmation of this hypothesis is still missing. (This figure is available in colour at JXB online.)

Supplementary data

Supplementary data are available at *JXB* online.

Supplementary Figure S1. Pathogen-resistance of *Nicotiana attenuata* plants treated with *cis*-zeatin and transgenic plants overproducing *cis*-zeatin (SAG-IPT2).

Supplementary Figure S2. *cis*-Zeatin riboside (cZR) amplifies methyljasmonate (MeJA)-induced anti-herbivore defenses in *Nicotiana attenuata*.

Acknowledgements

MS is funded by the Max-Planck Society, ITB by the Max-Planck Society and the Global Research Lab program (2012055546) from the National Research Foundation of Korea, CB by the Advanced Grant no. 293926 of the European Research Council to ITB, IMC by DAAD, DKG by the Individual Postdoctoral Grant No. 4093-00255 of the Danish Council for Independent Research, Danish Ministry of Higher Education and Science, and RV by the Czech Science Foundation, project no. 206/09/2062. We thank Dorothea Meldau for helpful comments on the manuscript.

References

Albacete A, Cantero-Navarro E, Balibrea ME, Grosskinsky DK, de la Cruz Gonzalez M, Martinez-Andujar C, Smigocki AC, Roitsch T, Perez-Alfocea F. 2014. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. *Journal of Experimental Botany* **65**, 6081–6095.

Alexandrov A, Chernyakov I, Gu WF, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. 2006. Rapid tRNA decay can result from lack of nonessential modifications. *Molecular Cell* **21**, 87–96.

Aremu AO, Plackova L, Bairu MW, Novak O, Szucova L, Dolezal K, Finnie JF, Van Staden J. 2014. Endogenous cytokinin profiles of tissue-cultured and acclimatized 'Williams' bananas subjected to different aromatic cytokinin treatments. *Plant Science* **214**, 88–98.

Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ. 2012. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. *PLoS Genetics* **8**, e1002448.

Armstrong DJ, Skoog F. 1975. Chromatography of cytokinins on a neutral polystyrene resin: A simple procedure for the separation of the *cis* and *trans* isomers of zeatin or ribosylzeatin. *Plant Physiology* **55**, 237–239.

Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJ, Chen J, Kramer DM, He SY, Howe GA. 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. *Plant Physiology* **165**, 1302–1314.

Balibrea Lara ME, Gonzalez Garcia MC, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T. 2004. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. *The Plant Cell* **16**, 1276–1287.

Banowetz GM. 1993. Monoclonal antibodies against the plant cytokinin, *cis*-zeatin riboside. *Hybridoma* **12**, 729–736.

Barna B, Smigocki AC, Baker JC. 2008. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in *Nicotiana* spp. *Phytopathology* **98**, 1242–1247.

Bassil NV, Mok D, Mok MC. 1993. Partial purification of a *cis-trans*-isomerase of zeatin from immature seed of *Phaseolus vulgaris* L. *Plant Physiology* **102**, 867–872.

Behr M, Motyka V, Weihmann F, Malbeck J, Deising HB, Wirsel SG. 2012. Remodeling of cytokinin metabolism at infection sites of *Colletotrichum graminicola* on maize leaves. *Molecular Plant-Microbe Interactions* **25**, 1073–1082.

Bennett RN, Wallsgrove RM. 1994. Secondary metabolites in plant defence-mechanisms. *New Phytologist* **127**, 617–633.

Bielecki RL. 1964. The problem of halting enzyme action when extracting plant tissues. *Analytical Biochemistry* **9**, 431–442.

Boyer JS. 1982. Plant productivity and environment. *Science* **218**, 443–448.

Burkhardt L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C, Frommer WB. 2003. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of *Arabidopsis*. *The Plant Journal* **34**, 13–26.

Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I. 2010. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in *Arabidopsis*. *Developmental Cell* **19**, 284–295.

Choi J, Lee J, Kim K, Cho M, Ryu H, An G, Hwang I. 2012. Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. *Plant and Cell Physiology* **53**, 1334–1343.

Conrad K, Kohn B. 1975. Zunahme von cytokinin und auxin in verwundetem speichergewebe von *Solanum tuberosum*. *Phytochemistry* **14**, 325–328.

Corrado G, Karali M. 2009. Inducible gene expression systems and plant biotechnology. *Biotechnology Advances* **27**, 733–743.

Dauphin B, Teller G, Durand B. 1979. Identification and quantitative analysis of cytokinins from shoot apices of *Mercurialis ambigua* by gas chromatography-mass spectrometry computer system. *Planta* **144**, 113–119.

Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM. 2010. Cytokinin primes plant responses to wounding and reduces insect performance. *Journal of Plant Growth Regulation* **29**, 289–296.

Dobra J, Motyka V, Dobrev P, Malbeck J, Prasol IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R. 2010. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. *Journal of Plant Physiology* **167**, 1360–1370.

Dobrev P, Motyka V, Gaudinova A, Malbeck J, Travnickova A, Kaminek M, Vankova R. 2002. Transient accumulation of *cis*- and *trans*-zeatin type cytokinins and its relation to cytokinin oxidase activity during cell cycle of synchronized tobacco BY-2 cells. *Plant Physiology and Biochemistry* **40**, 333–337.

Dobrev PI, Kaminek M. 2002. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. *Journal of Chromatography A* **950**, 21–29.

Durand R, Durand B. 1994. Cytokinins and reproductive organogenesis in *Mercurialis*. In: Mok DWS, Mok MC, eds. *Cytokinins: Chemistry, Activity, and Function*. Boca Raton, FL: CRC Press, 295–304.

El Yacoubi B, Bailly M, de Crécy-Lagard V. 2012. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. *Annual Review of Genetics* **46**, 69–95.

Emanuelsson O, Nielsen H, Von Heijne G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. *Protein Science* **8**, 978–984.

Emery RJ, Leport L, Barton JE, Turner NC, Atkins CA. 1998. *cis*-Isomers of cytokinins predominate in chickpea seeds throughout their development. *Plant Physiology* **117**, 1515–1523.

Entsch B, Parker CW, Letham DS, Summons RE. 1979. Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. *Biochimica et Biophysica Acta* **570**, 124–139.

Fournier A, Chavancy G, Garel JP. 1976. Turnover of transfer-RNA species during development of posterior silkgland of *Bombyx mori* L. *Biochemical and Biophysical Research Communications* **72**, 1187–1194.

Frebort I, Kowalska M, Hluskova T, Frebortova J, Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. *Journal of Experimental Botany* **62**, 2431–2452.

Gajdošová S, Spíchal L, Kamínek M, et al. 2011. Distribution, biological activities, metabolism, and the conceivable function of *cis*-zeatin-type cytokinins in plants. *Journal of Experimental Botany* **62**, 2827–2840.

Gan SS, Amasino RM. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. *Science* **270**, 1986–1988.

Giron D, Glevarec G. 2014. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. *Journal of Chemical Ecology* **40**, 826–835.

Goggin DE, Emery R J N, Powles SB, Steadman K J. 2010. Initial characterisation of low and high seed dormancy populations of *Lolium rigidum* produced by repeated selection. *Journal of Plant Physiology* **167**, 1282–1288.

Großkinsky DK, Edelsbrunner K, Pfeifhofer H, van der Graaff E, Roitsch T. 2013. *Cis*- and *trans*-zeatin differentially modulate plant immunity. *Plant Signaling & Behavior* **8**, e24798.

Großkinsky DK, Naseem M, Abdelmohsen UR, et al. 2011. Cytokinins mediate resistance against *Pseudomonas syringae* in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. *Plant Physiology* **157**, 815–830.

Großkinsky DK, van der Graaff E, Roitsch T. 2014. Abscisic acid-cytokinin antagonism modulates resistance against *Pseudomonas syringae* in tobacco. *Phytopathology* **104**, 1283–1288.

Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A. 2014. A new subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. *Plant Physiology* **165**, 227–237.

Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. 2012. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNA(Phe) anticodon loop. *Rna-a Publication of the Rna Society* **18**, 1921–1933.

Gyulai G, Heszky LE. 1994. Auxin and cytokinin bioassays: A short overview. *Acta Agronomica Hungarica* **43**, 185–197.

Hall RH, Csonka L, David H, McLennan B. 1967. Cytokinins in the soluble RNA of plant tissues. *Science* **156**, 69–71.

Hashizume T, Sugiyama T, Imura M, Cory HT, Scott MF, McCloskey JA. 1979. Determination of cytokinins by mass spectrometry based on stable isotope dilution. *Analytical Biochemistry* **92**, 111–122.

Hashizume T, Suye S-I, Sugiyama T. 1982. Isolation and identification of *cis*-zeatin riboside from tubers of sweet potato (*Ipomoea batatas* L.). *Agricultural and Biological Chemistry* **46**, 663–665.

Havlova M, Dobrev PI, Motyka V, Storchova H, Libus J, Dobra J, Malbeck J, Gaudinova A, Vankova R. 2008. The role of cytokinins in responses to water deficit in tobacco plants over-expressing *trans*-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. *Plant Cell and Environment* **31**, 341–353.

Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. 2008. Regulation of cytokinin biosynthesis, compartmentalization and translocation. *Journal of Experimental Botany* **59**, 75–83.

Hocart CH, Wong OC, Letham DS, Tay SA, MacLeod JK. 1986. Mass spectrometry and chromatography of t-butylidemethylsilyl derivatives of cytokinin bases. *Analytical Biochemistry* **153**, 85–96.

Hopper AK, Pai DA, Engelke DR. 2010. Cellular dynamics of tRNAs and their genes. *FEBS Letters* **584**, 310–317.

Hothorn M, Dabi T, Chory J. 2011. Structural basis for cytokinin recognition by *Arabidopsis thaliana* histidine kinase 4. *Nature Chemical Biology* **7**, 766–768.

Hou B, Lim EK, Higgins GS, Bowles DJ. 2004. *N*-glucosylation of cytokinins by glycosyltransferases of *Arabidopsis thaliana*. *Journal of Biological Chemistry* **279**, 47822–47832.

Hummel GM, Naumann M, Schurr U, Walter A. 2007. Root growth dynamics of *Nicotiana attenuata* seedlings are affected by simulated herbivore attack. *Plant Cell and Environment* **30**, 1326–1336.

Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsujii H. 2013. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. *Molecular Plant-Microbe Interactions* **26**, 287–296.

Kamínek M, Pačes V, Corse J, Challice JS. 1979. Effect of stereospecific hydroxylation of N^6 -(Δ^2 -Isopentenyl)adenosine on cytokinin activity. *Planta* **145**, 239–243.

Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H. 2004. Distinct isoprenoid origins of *cis*- and *trans*-zeatin biosyntheses in *Arabidopsis*. *Journal of Biological Chemistry* **279**, 14049–14054.

Kojima M, Kamada-Nobusada T, Komatsu H, et al. 2009. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in *Oryza sativa*. *Plant and Cell Physiology* **50**, 1201–1214.

Köllmer I, Novak O, Strnad M, Schmülling T, Werner T. 2014. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from *Arabidopsis* causes specific changes in root growth and xylem differentiation. *The Plant Journal* **78**, 359–371.

Kosova K, Prasil IT, Vitamvas P, et al. 2012. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. *Journal of Plant Physiology* **169**, 567–576.

Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H. 2012. Cytokinin activity of *cis*-zeatin and phenotypic alterations induced by overexpression of putative *cis*-zeatin-O-glucosyltransferase in rice. *Plant Physiology* **160**, 319–331.

Kumari S, Priya P, Misra G, Yadav G. 2013. Structural and biochemical perspectives in plant isoprenoid biosynthesis. *Phytochemistry Reviews* **12**, 255–291.

Kuraishi S, Tasaki K, Sakurai N, Sadatoku K. 1991. Changes in levels of cytokinin in etiolated squash seedlings after illumination. *Plant and Cell Physiology* **32**, 585–591.

Laten H, Gorman J, Bock RM. 1978. Isopentenyladenosine deficient transfer-RNA from an antisuppressor mutant of *Saccharomyces cerevisiae*. *Nucleic Acids Research* **5**, 4329–4342.

Le DT, Nishiyama R, Watanabe Y, et al. 2012. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. *PLoS One* **7**, e42411.

Lee SR, Collins K. 2005. Starvation-induced cleavage of the tRNA anticodon loop in *Tetrahymena thermophila*. *Journal of Biological Chemistry* **280**, 42744–42749.

Leonard NJ, Playtis AJ, Skoog F, Schmitz RY. 1971. A stereoselective synthesis of *cis*-zeatin. *Journal of the American Chemical Society* **93**, 3056–3058.

Letham DS. 1963. Zeatin, a factor inducing cell division isolated from *Zea mays*. *Life Sciences* **8**, 569–573.

Letham DS. 1978. Cytokinins. In: Letham DS, Goodwin PB, G, Higgins TV, eds. *Phytohormones and Related Compounds—a Comprehensive Treatise*, Vol. 1. Elsevier/North Holland Biomedical Press, 205–263.

Letham DS, Palni LMS, Tao G-Q, Gollnow Bl, Bates CM. 1983. Regulators of cell division in plant tissues. XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. *Journal of Plant Growth Regulation* **2**, 103–115.

Letham DS, Singh S, Wong OC. 1991. Mass spectrometric analysis of cytokinins in plant tissue VII. Quantification of cytokinin bases by negative ion mass spectrometry. *Journal of Plant Growth Regulation* **10**, 107–113.

Lindner AC, Lang D, Seifert M, Podlesakova K, Novak O, Strnad M, Reski R, von Schwartzberg K. 2014. Isopentenyltransferase-1 (IPT1) knockout in *Physcomitrella* together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. *Journal of Experimental Botany* **65**, 2533–2543.

Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H. 2011. Ligand-binding properties and subcellular localization of maize cytokinin receptors. *Journal of Experimental Botany* **62**, 5149–5159.

Lulsdorf MM, Yuan HY, Slater SMH, Vandenberg A, Han XM, Zaharia LI, Abrams SR. 2013. Endogenous hormone profiles during early seed development of *C. arietinum* and *C. anatolicum*. *Plant Growth Regulation* **71**, 191–198.

Mackova H, Hronkova M, Dobra J, et al. 2013. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. *Journal of Experimental Botany* **64**, 2805–2815.

Mader JC, Emery R J N, Turnbull CGN. 2003. Spatial and temporal changes in multiple hormone groups during lateral bud release shortly following apex decapitation of chickpea (*Cicer arietinum*) seedlings. *Physiologia Plantarum* **119**, 295–308.

Martin RC, Mok MC, Habben JE, Mok DW. 2001. A maize cytokinin gene encoding an O-glucosyltransferase specific to *cis*-zeatin. *Proceedings of the National Academy of Sciences, USA* **98**, 5922–5926.

Mauk CS, Langille AR. 1978. Physiology of tuberization in *Solanum tuberosum* L.: *cis*-zeatin riboside in the potato plant: Its identification

and changes in endogenous levels as influenced by temperature and photoperiod. *Plant Physiology* **62**, 438–442.

Meldau S, Ullman-Zeunert L, Govind G, Bartram S, Baldwin IT. 2012. MAPK-dependent JA and SA signalling in *Nicotiana attenuata* affects plant growth and fitness during competition with conspecifics. *BMC Plant Biology* **12**, 213.

Miyawaki K, Matsumoto-Kitano M, Kakimoto T. 2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in *Arabidopsis*: tissue specificity and regulation by auxin, cytokinin, and nitrate. *The Plant Journal* **37**, 128–138.

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T. 2006.

Roles of *Arabidopsis* ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. *Proceedings of the National Academy of Sciences, USA* **103**, 16598–16603.

Mok MC, Martin RC, Mok DWS, Shaw G. 1992. Cytokinin activity, metabolism and function in *Phaseolus*. In: Kaminek M, Mok DWS, Zazimalova E, eds. *Physiology and biochemistry of cytokinins in plants*. The Hague: SPB Academic Publishers, 41–46.

Mok MC, Mok DWS, Armstrong DJ. 1978. Differential cytokinin structure-activity-relationships in *Phaseolus*. *Plant Physiology* **61**, 72–75.

Nicander B, Bjorkman PO, Tillberg E. 1995. Identification of an N-glucoside of *cis*-zeatin from potato tuber sprouts. *Plant Physiology* **109**, 513–516.

Nicander B, Stahl U, Bjorkman PO, Tillberg E. 1993. Immunoaffinity co-purification of cytokinins and analysis by high-performance liquid chromatography with ultraviolet-spectrum detection. *Planta* **189**, 312–320.

Novak O, Tarkowski P, Tarkowska D, Dolezal K, Lenobel R, Strnad M. 2003. Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. *Analytica Chimica Acta* **480**, 207–218.

Ogawa Y, Nishikawa S, Inoue N, Aoki S. 1990. Promotive effects of different cytokinins on the fruit-growth in *Cucumis sativus* L. *Journal of the Japanese Society for Horticultural Science* **59**, 597–601.

Parker CW, Badenoch-Jones J, Letham DS. 1989. Radioimmunoassay for quantifying the cytokinins *cis*-zeatin and *cis*-zeatin riboside and its application to xylem sap samples. *Journal of Plant Growth Regulation* **8**, 93–105.

Patzak J, Dobrev PI, Motyka V. 2013. Endogenous phytohormone levels in dwarf and normal hop (*Humulus lupulus* L.) plants. *III International Humulus Symposium* **1010**, 141–148.

Persson BC, Esberg B, Olafsson O, Bjork GR. 1994. Synthesis and function of isopentenyl adenosine derivatives in transfer-RNA. *Biochimie* **76**, 1152–1160.

Perty I, Vaclavikova K, Depuydt S, et al. 2009. Identification of *Rhodococcus fascians* cytokinins and their modus operandi to reshape the plant. *Proceedings of the National Academy of Sciences, USA* **106**, 929–934.

Phizicky EM, Hopper AK. 2010. tRNA biology charges to the front. *Genes & Development* **24**, 1832–1860.

Pinero MC, Houdusse F, Garcia-Mina JM, Garnica M, Del Amor FM. 2014. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO₂ concentration. *Physiologia Plantarum* **151**, 375–389.

Prinsen E, Redig P, Van Dongen W, Esmans EL, Van Onckelen H. 1995. Quantitative analysis of cytokinins by electrospray tandem mass spectrometry. *Rapid Communications in Mass Spectrometry* **9**, 948–953.

Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H. 2011. Regulated expression of an isopentenyltransferase gene (*IPT*) in peanut significantly improves drought tolerance and increases yield under field conditions. *Plant and Cell Physiology* **52**, 1904–1914.

Straker PE, Emery R J N. 2007. *cis*-Cytokinins that predominate in *Pisum sativum* during early embryogenesis will accelerate embryo growth in vitro. *Canadian Journal of Botany-Revue Canadienne De Botanique* **85**, 91–103.

Rangan P, Subramani R, Kumar R, Singh AK, Singh R. 2014. Recent advances in polyamine metabolism and abiotic stress tolerance. *BioMed Research International* **2014**, 9.

Riefler M, Novak O, Strnad M, Schmülling T. 2006. *Arabidopsis* cytokinin receptor mutants reveal functions in shoot growth, leaf

senescence, seed size, germination, root development, and cytokinin metabolism. *The Plant Cell* **18**, 40–54.

Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. 2003. Extracellular invertase: key metabolic enzyme and PR protein. *Journal of Experimental Botany* **54**, 513–524.

Romanov GA, Lomin SN, Schmülling T. 2006. Biochemical characteristics and ligand-binding properties of *Arabidopsis* cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. *Journal of Experimental Botany* **57**, 4051–4058.

Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. *Annual Review of Plant Biology* **57**, 431–449.

Saleem M, Lamkemeyer T, Schützenmeister A, Madlung J, Sakai H, Piepho H-P, Nordheim A, Hochholdinger F. 2010. Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokinin-regulated proteins. *Plant Physiology* **152**, 4–18.

Scarborough E, Armstrong DJ, Skoog F, Frihart CR, Leonard NJ. 1973. Isolation of *cis*-zeatin from *Corynebacterium fascians* cultures. *Proceedings of the National Academy of Sciences, USA* **70**, 3825–3829.

Schäfer M, Meza-Canales ID, Navarro-Quezada A, Brutting C, Vankova R, Baldwin IT, Meldau S. 2014a. Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in *Nicotiana attenuata*. *Journal of Integrative Plant Biology* **57**, 198–212.

Schäfer M, Reichelt M, Baldwin IT, Meldau S. 2014b. Cytokinin analysis: sample preparation and quantification. *Bio-protocol* **4**, e1167.

Schmitz RY, Skoog F. 1972. Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. *Plant Physiology* **50**, 702–705.

Schmitz RY, Skoog F, Playtis AJ, Leonard NJ. 1972. Cytokinins—synthesis and biological activity of geometric and position isomers of zeatin. *Plant Physiology* **50**, 702–705.

Skoog F, Armstrong DJ, Cherayil JD, Hampel AE, Bock RM. 1966. Cytokinin activity: localization in transfer RNA preparations. *Science* **154**, 1354–1356.

Smigocki A, Neal JW, Jr., McCanna I, Douglass L. 1993. Cytokinin-mediated insect resistance in *Nicotiana* plants transformed with the ipt gene. *Plant Molecular Biology* **23**, 325–335.

Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. 2004. Two cytokinin receptors of *Arabidopsis thaliana*, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. *Plant and Cell Physiology* **45**, 1299–1305.

Stirk WA, Gold JD, Novak O, Strnad M, van Staden J. 2005. Changes in endogenous cytokinins during germination and seedling establishment of *Tagetes minuta* L. *Plant Growth Regulation* **47**, 1–7.

Stirk WA, Novak O, Vaclavikova K, Tarkowski P, Strnad M, van Staden J. 2008. Spatial and temporal changes in endogenous cytokinins in developing pea roots. *Planta* **227**, 1279–1289.

Stirk WA, Novak O, Zizkova E, Motyka V, Strnad M, van Staden J. 2012. Comparison of endogenous cytokinins and cytokinin oxidase/dehydrogenase activity in germinating and thermoinhibited *Tagetes minuta* achenes. *Journal of Plant Physiology* **169**, 696–703.

Stirk WA, van Staden J, Novak O, Dolezal K, Strnad M, Dobrev PI, Sipos G, Ordog V, Balint P. 2011. Changes in endogenous cytokinin concentrations in *Chlorella* (Chlorophyceae) in relation to light and the cell cycle. *Journal of Phycology* **47**, 291–301.

Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T. 2011. The specificity of cytokinin signalling in *Arabidopsis thaliana* is mediated by differing ligand affinities and expression profiles of the receptors. *The Plant Journal* **67**, 157–168.

Straker PE, Hayward AR, Emery R J N. 2010. Gall-inducing *Pachypsylla celtidis* (Psylidae) infiltrate hackberry trees with high concentrations of phytohormones. *Journal of Plant Interactions* **5**, 197–203.

Strzelczyk E, Pokojska A, Kampert M, Michalski L, Kowalski S. 1989. Production of plant-growth regulators by non-mycorrhizal fungi associated with the roots of forest trees. *Interrelationships between Microorganisms and Plants in Soil*, 213–222.

Strutt JC, Banowetz GM. 2000. Changes in *cis*-zeatin and *cis*-zeatin riboside levels and biological activity during potato tuber dormancy. *Physiologia Plantarum* **109**, 68–74.

Takagi M, Yokota T, Murofushi N, Ota Y, Takahashi N. 1985. Fluctuation of endogenous cytokinin contents in rice during its life

cycle-quantification of cytokinins by selected ion monitoring using deuterium-labelled internal standards. *Agricultural and Biological Chemistry* **49**, 3271–3277.

Takagi M, Yokota T, Murofushi N, Saka H, Takahashi N. 1989. Quantitative changes of free-base, riboside, ribotide and glucoside cytokinins in developing rice grains. *Plant Growth Regulation* **8**.

Taller BJ. 1994 Distribution, biosynthesis, and function of cytokinins in tRNA. In: David WS Mok MCM, eds. *Cytokinins Chemistry, Activity and Function*. Corvallis, Oregon: CRC Press, 101–111.

Tarkowska D, Filek M, Biesaga-Koscielniak J, Marcinska I, Machackova I, Krekule J, Strnad M. 2012. Cytokinins in shoot apices of *Brassica napus* plants during vernalization. *Plant Science* **187**, 105–112.

Tay SAB, MacLeod JA, Palni LM. 1986. On the reported occurrence of *cis* zeatin riboside as a free cytokinin in tobacco shoots. *Plant Science* **43**, 131–134.

Upfold SJ, Van Staden J. 1990. Cytokinins in cut carnation flowers. VII. The effect of zeatin and dihydrozeatin derivatives on flower longevity. *Plant Growth Regulation* **9**, 77–81.

Van Meulebroek L, Bussche JV, Steppe K, Vanhaecke L. 2012. Ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. *Journal of Chromatography A* **1260**, 67–80.

van Rhijn JA, Heskampa HH, Davelaarb E, Jordib W, Leloux MS, Brinkman UA. 2001. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. *Journal of Chromatography A* **929**, 31–42.

Vankova R. 1999. Cytokinin glycoconjugates—distribution, metabolism and function. In: Strnad M, Pec P, Beck E, eds. *Advances in regulation of plant growth and development*. Prague: Peres Publishers, 67–78.

Vankova R, Kosova K, Dobrev P, et al. 2014. Dynamics of cold acclimation and complex phytohormone responses in *Triticum monococcum* lines G3116 and DV92 differing in vernalization and frost tolerance level. *Environmental and Experimental Botany* **101**, 12–25.

Vaseva I, Todorova D, Malbeck J, Travnickova A, Machackova I. 2009. Mild temperature stress modulates cytokinin content and cytokinin oxidase/dehydrogenase activity in young pea plants. *Acta Agronomica Hungarica* **57**, 33–40.

Veach YK, Martin RC, Mok DW, Malbeck J, Vankova R, Mok MC. 2003. O-glucosylation of *cis*-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. *Plant Physiology* **131**, 1374–1380.

von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novak O, Motyka V, Strnad M. 2007. Cytokinins in the bryophyte *Physcomitrella patens*: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. *Plant Physiology* **145**, 786–800.

Vreman HJ, Skoog F, Leonard NJ, Frihart CR. 1972. Cytokinins in *pisum* transfer ribonucleic-acid. *Plant Physiology* **49**, 848–&.

Vreman HJ, Thomas R, Corse J, Swaminathan S, Murai N. 1978. Cytokinins in transfer-RNA obtained from *Spinacia oleracea*-L. leaves and isolated chloroplasts. *Plant Physiology* **61**, 296–306.

Vyroubalova S, Vaclavikova K, Tureckova V, Novak O, Smejilova M, Hluska T, Ohnoutkova L, Frebort I, Galuszka P. 2009. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. *Plant Physiology* **151**, 433–447.

Waaas WF, Druzina Z, Hanan M, Schimmel P. 2007. Role of a tRNA base modification and its precursors in frameshifting in eukaryotes. *Journal of Biological Chemistry* **282**, 26026–26034.

Wagner BM, Beck E. 1993. Cytokinins in the perennial herb *Urtica dioica* L. as influenced by its nitrogen status. *Planta* **190**, 511–518.

Watanabe N, Yokota T, Takahashi N. 1978. *cis*-Zeatin Riboside: Its occurrence as a free nucleoside in cones of the hop plant. *Agricultural and Biological Chemistry* **42**, 2415–2416.

Watanabe N, Yokota T, Takahashi N. 1981. Variations in the levels of *cis*- and *trans*-ribosylzeatins and other minor cytokinins during development and growth of cones of the hop plant. *Plant and Cell Physiology* **22**, 489–500.

Weiler EW. 1980. Radioimmunoassays for *trans*-zeatin and related cytokinins. *Planta* **149**, 155–162.

Werner T, Nehnevajova E, Kollmer I, Novak O, Strnad M, Kramer U, Schmülling T. 2010. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in *Arabidopsis* and tobacco. *The Plant Cell* **22**, 3905–3920.

Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. 2012. Plant hormone interactions: innovative targets for crop breeding and management. *Journal of Experimental Botany* **63**, 3499–3509.

Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T. 2001. The *Arabidopsis* AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. *Plant and Cell Physiology* **42**, 1017–1023.

Yamasaki S, Ivanov P, Hu GF, Anderson P. 2009. Angiogenin cleaves tRNA and promotes stress-induced translational repression. *Journal of Cell Biology* **185**, 35–42.

Yang J, Peng S, Visperas R, Sanico A, Zhu Q, Gu S. 2000. Grain filling pattern and cytokinin content in the grains and roots of rice plants. *Plant Growth Regulation* **30**, 261–270.

Yonekura-Sakakibara K, Kojima M, Yamaya T, Sakakibara H. 2004. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to *cis*-zeatin. *Plant Physiology* **134**, 1654–1661.

Zalabák D, Galuszka P, Mrázová K, Podlešáková K, Gu R, Frébortová J. 2014. Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. *Plant Physiology and Biochemistry* **74**, 283–293.